Innovations in DVT Treatment: An Evidence-Based Review of Proximal and Distal **Approaches**

THE OHIO STATE UNIVERSITY

WEXNER MEDICAL CENTER

Farbod Fazlollahi^{1,2}, BS: Mina S. Makarv^{1,2}, MD

College of Medicine1; Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center2, Columbus, OH 43210, United States

Purpose

- Deep vein thrombosis (DVT) of the lower limbs is a prevalent and serious condition affecting 9.3 per 10,000 individuals annually.
- Cancer patients are at particular risk due to hypercoagulability, prolonged immobility, endothelial injury from oncotherapy, and catheterization.
- DVT is categorized as proximal (inferior vena cava to popliteal vein) or distal (below the knee), with treatment goals focused on symptom resolution, quality of life improvement, and minimizing adverse
- This work presents an evidence-based review of the current data on effectiveness and long-term outcomes by treatment modality for proximal DVT (PDVT) and distal DVT (DDVT).

Materials and Methods

- A comprehensive review of guidelines and clinical data was conducted, focusing on management approaches to PDVT and DDVT.
- Data were collected from PubMed-indexed literature, recent and ongoing clinical trials, and guidelines from multiple clinical societies

Results

- Current guidelines from SIR and ASH encourage prompt systemic or catheterdirected anticoadulation for PDVT based on severity and bleeding risk, while urgency for DDVT treatment varies.
- Mechanical thrombectomy (MT) is generally not recommended due to uncertain efficacy compared to pharmacologic methods but may be viable for limb-threatening DVT.

Clinical Society	UK National Institute of Healthcare Excellence (2020)	American Society of Hematology (2020) AC first. If DVT extensive and thrombolysis appropriate, CDT >> systemic.	
Guideline	CDT- symptomatic for <14d, good functional status, life expectancy >1 yr, and low bleeding risk.		
European Society of Vascular Surgery (2021)	American College of Chest Physicians (2021)	Society of Interventional Radiology (2023)	
, ,	(2021)	(2023)	

Table 1. Societal Iliofemoral DVT Management Guidelines. Review of clinical societal recommendations for management of acute iliofemoral DVT as a demonstration of general agreement between different societies on management of the same condition. (CDT: catheter directed thrombolysis; AC: anticoagulation; MT: mechanical thrombectomy)

Technique	Technologies
Mechanical Clot Engagement and/or Aspiration	ICHOR Percutaneous Reperfusion System (ICHOR Vascular) Laguna Thrombectomy System (Innova Vascular) Artix (Inal Medical) SmartClaw Thrombectomy Catheter (Boston Scientific) Pounce Thrombectomy Systems (Surmodics)* ClotTriever (Inari Medical)
Mechanical Clot Disruption/Maceration and Aspiration	Cleaner Rotational Thrombectomy System (Argon Medical Devices)* Aspirex Mechanical Aspiration System (BD/Bayer)* D'Clot HD Thrombectomy System (Mermaid Medical)* Symphony Thrombectomy System (Imperative Care Vascular) Prodigy Thrombectomy System (Imperative Care Vascular) FlowTriever Catheter (Inari Medical)
Rheolytic Clot Disruption and Aspiration	Jeti (Walk Vascular/Abbott)* AngioJet (Boston Scientific)
Thrombus Aspiration	AlphaVac (AngioDynamics) Control Mechanical Thrombectomy System (Control Medical Technology) Lightning Flash/Bolt Thrombectomy System (Penumbra) QuickClear Mechanical Thrombectomy System (Philips)
Catheter-Directed Thrombolysis (± Aspiration)	EKOS Endovascular System (BTG/Boston Scientific)* ZelanteDVT Catheter (Boston Scientific) Bashir Endovascular Catheters (Thrombolex)* Cleaner Rotational Thrombectomy System (Argon Medical Devices)* Multi-Sideport Catheter Infusion Set (Multiple Companies)

Table 2a. Currently available interventional technologies for the treatment of peripheral thrombosis. Mechanical clot engagement typically relies on Nitinol mesh. Rheolytic devices use liquid to macerate and fragment thrombi. Catheter-Directed Thrombolysis devices have the functionality to deliver thrombolytic agents at the thrombus with or without additional functionality. * - indicates unique mechanism of action compared to other devices in the same class. Italicized - indicates utility in both acute AND chronic clot

		Anticoagulant	Mechanism of Action	Average Cost Per Month (in USD)	Reversal Agent	Half-Life
	٢	Dabigatran (Pradaxa)	Direct thrombin inhibitor	~\$293	Idarucizumab (Praxbind)	12-17 hours
Direct Oral Anticoagulants	}	Rivaroxaban (Xarelto)	Direct Factor Xa inhibitor	~\$625	Andexanet alfa (Andexxa), aPCC	5-9 hours
Direct Anticoa		Apixaban (Eliquis)	Direct Factor Xa inhibitor	~\$700	Andexanet alfa (Andexxa), aPCC	12 hours
	L	Edoxaban (Savaysa)	Direct Factor Xa inhibitor	~\$513	None (aPCC off-label)	10-14 hours
		Unfractionated Heparin	Inhibits thrombin & Factor Xa	Variable (\$120 - \$319)	Protamine sulfate	1-1.5 hours
ins rins	٢	Enoxaparin (Lovenox)	Primarily inhibits Factor Xa	~\$787	Protamine sulfate (partial)	4-7 hours
Low Molecular Weight Heparins	ļ	Dalteparin (Fragmin)	Primarily inhibits Factor Xa	~\$1461	Protamine sulfate (partial)	3-5 hours
Low Weigh	L	Tinzaparin (Innohep)	Inhibits Factor Xa and thrombin	Variable	Protamine sulfate (partial)	3-4 hours
		Fondaparinux (Arixtra)	Indirect Factor Xa inhibitor	~\$3888	None (aPCC/rFVIIa off-label)	17-21 hours
		Warfarin (Coumadin)	Inhibits vitamin K-dependent factors	~\$261	Vitamin K, FFP, PCC	20-60 hours
Table 2 Pharmacetharanguties for Vangus Thromhoomholism Anticos						

Table 3. Pharmacotherapeutics for Venous Thromboembolism. Anticoagulants currently FDA approved for use in venous thromboembolism. Costs are for 30d supply of brand name medication from commercial pharmacy without insurance. (USD: United States Dollars; aPCC: Activated prothrombin complex concentrate; FFP: Fresh

frozen plasma)			
1	Technology		Unique Characteristic
	Pounce Thrombectomy Systems (Surmodics)*		2 sequential mesh baskets for engagement DDVT and PDVT specific models
	Cleaner Rotational Thrombectomy System (Argon Medical Devices)*	(Vessel wall contact with sinusoidal wire for clot maceration with simultaneous thrombolytic delivery
	Aspirex Mechanical Aspiration System (BD/Bayer)*	t	Helical aspiration with mechanical augur transport, continuous augur maceration inside catheter tip
	D*Clot HD Thrombectomy System (Mermaid Medical)*		High-speed rotating spiral shaft with steel tip for rapid clot maceration
	Jeti (Walk Vascular/Abbott)*		Saline jet inside catheter directed orthogonal to aspiration axis for rheolytic clot maceration
	EKOS Endovascular System (BTG/Boston Scientific)*		Utilizes ultrasound energy to disrupt clot and expose more surface area to thrombolytics
	Bashir Endovascular Catheters (Thrombolex)*	i	Deploys mesh-shaped catheter inside clot to simultaneously disrupt clot and greatly increase clot surface area exposed to thrombolytic

Table 2b. Techniques with unique mechanism of action compared to other technologies of the same

Results cont...

- Less consensus exists for DDVT management, but recent and ongoing clinical trials have had intriguing results.
- · Comparison of data from the ATTRACT trial and CLOUT registry revealed that anticoagulation alone significantly increases risk of post-thrombotic syndrome (PTS), a chronic complication of DVT, compared to
- · CAVA, CAVENT, and ATTRACT trials have provided valuable data, but a distinct benefit over standard of care has not vet been shown.
- · One example is the RIETE Registry, an ongoing international clinical registry of acute VTE started in 2001, currently with 128,584 cases recorded across 203 hospitals.
- · With advances in MT technology and endovascular anticoagulation, improved management protocols for acute PDVT and DDVT are on the horizon.

Conclusions

- Advancements in endovascular approaches to thrombectomy and anticoagulation have broadened treatment options for both PDVT and DDVT
- DVT and its complication, PTS, represent a substantial global healthcare and economic
- Further research and large-scale trials are essential to optimize treatment paradigms, minimize time to complete VTE resolution. and reduce endothelial damage and systemic anticoagulant exposure.

References