Gyroscopic Radiosurgery Patient Alignment Comparison: Shim Head and Shoulder Mask Versus Standard Head Mask

Michael Chaga¹, Timothy Chen¹, Wenzheng Feng¹, Tingyu Wang¹, Darra Conti¹, Jing Feng¹, Ma Rhudelyn Rodrigo¹, Elizabeth Luick¹, Daniel Thompson¹, Joy Baldwin¹, Brielle Latif¹, Joseph Hanley¹, Shabbar Danish²

¹Department of Radiation Oncology, Jersey Shore University Medical Center; ²Department of Neurosurgery, Jersey Shore University Medical Center

Background & Objectives

- The ZAP-X is the newest cranial stereotactic radiosurgery (SRS) platform. • Accurate positioning and immobilization are essential due to the high
- doses and precision required. • Traditionally, standard of care for immobilizing patients undergoing linear accelerator-based SRS involves a full-head thermoplastic mask [1].
- In this study, patient alignment accuracy is evaluated for a shim head and shoulder mask compared to the standard head mask in ZAP-X SRS for the treatment of malignant and benign lesions.

Methods

- Prospectively, 60 patients were evaluated consisting of 30 standard Fibreplast and Nanor head mask patients and 30 shim Efficast head and shoulder mask patients [2-3].
- Two shims were employed during head and shoulder mask creation.
- Alignment deviation > 2 mm in any direction and 1.5° in any rotation axis required a readjustment of the patient positioning.
- ZAP-X patient alignment accuracy was accessed through system log files obtained from the treatment console.
- Mask comfort was evaluated for 30 shim head and shoulder mask patients and 30 standard head mask patients using a Likert scale from 1-5 (1 = "very poor", 5 = "very good").

Figure 1. (a) and (b) standard Fibreplast and Nanor head mask (c) and (d) Efficast head and shoulder mask.

	Pitch	24 24
Rotation (+ / -)	+	
How to reposition patient	Move chin down toward chest	Roll h pat
		ACCORDANCE -

Figure 2. The patient alignment process involves a sequence of 3D alignment steps using non-coaxial kV x-ray images from multiple gantry angles. The images are co-registered to digitally reconstructed radiographs generated from the initial CT used in the treatment plan. The initial auto-alignment before treatment was approved by a radiation oncologist. Alignment deviation of more than 2 mm in any direction and 1.5° in any rotation axis would require a readjustment of the patient positioning and repeating auto-alignment and radiation oncologist approval. If > 5 gantry locations with MV dosimetry deviation of more than 10% exist, physicist investigation is required. Treatment would be stopped for further investigation with the vendor if > 10 gantry locations with MV dosimetry deviation of more than 10% exist.

Results

Table I. Mask parameter results for Fibreplast and Nanor head mask and Efficast head and shoulder mask. Two-sample t test with Welch correction was performed for mask comfort comparison. Two-sample Wilcoxon rank-sum (Mann-Whitney) test was performed for readjustments, setup time, and offset comparisons.

	-	-			
Parameter	Mask	Average	Median†	Range	P‡
Comfort	Fibreplast $(n = 30)$	4.1 ± 1.0	4 (3.5, 5)	2 - 5	0.0345
	Efficast $(n = 30)$	4.7 ± 0.7	5 (4.5, 5)	3 – 5	
Readjustments	Fibreplast $(n = 30)$	5 ± 4	4 (1, 7)	0-13	0.0194
	Efficast $(n = 30)$	2 ± 3	1 (0, 4)	0-12	
Setup time	Fibreplast $(n = 30)$	17 ± 11	15 (7, 24)	1 - 47	< 0.001
(min)	Efficast $(n = 30)$	10 ± 10	4 (2, 11)	1 - 51	
x-offset (mm)	Fibreplast $(n = 30)$	0.0 ± 0.4	0 (-0.15, 0.14)	-3.94 - 4.31	0.406
	Efficast $(n = 30)$	0.0 ± 0.3	0 (-0.12, 0.11)	-2.76 - 2.48	
y-offset (mm)	Fibreplast $(n = 30)$	0.0 ± 0.3	0 (-0.11, 0.11)	-6.57 - 2.28	0.0014
	Efficast $(n = 30)$	0.0 ± 0.3	0 (-0.08, 0.11)	-3.06 - 3.61	
z-offset (mm)	Fibreplast $(n = 30)$	0.0 ± 0.3	0 (-0.12, 0.14)	-3.12 - 6.53	0.453
	Efficast $(n = 30)$	0.0 ± 0.3	0 (-0.11, 0.12)	-3.01 - 2.22	
Pitch-offset (°)	Fibreplast $(n = 30)$	0.1 ± 0.8	0.15 (-0.61, 0.79)	-2.79 - 2.04	< 0.001
	Efficast $(n = 30)$	0.0 ± 0.5	-0.09 (-0.46, 0.72)	-2.64 - 2.01	< 0.001
Roll-offset (°)	Fibreplast $(n = 30)$	-0.2 ± 0.8	-0.20 (-0.87, 0.36)	-3.05 - 2.40	< 0.001
	Efficast $(n = 30)$	0.0 ± 0.6	-0.16 (-0.72, 0.26)	-1.87 - 1.68	< 0.001
Yaw-offset (°)	Fibreplast $(n = 30)$	0.0 ± 0.8	-0.22 (-0.62, 0.62)	-2.18 - 2.71	< 0.001
	Efficast $(n = 30)$	0.0 ± 0.8	-0.12 (-0.52, 0.50)	-2.11 - 2.08	< 0.001

†Median (interquartile range: p25, p75) $\ddagger P < 0.05$ significance

- 0.0294), and setup time (P = 0.0017).

Conclusion

treatment times.

References

Zhang M, Zhang Q, Gan H, I
radiosurgery and a deriva
Efficast. Orft. https://wwv
L-Profile Thermoplastic M
https://cqmedical.com/Pr

• Mask comfort improved significantly (P = 0.0345). The shim mask significantly reduced y-offset (P = 0.0014), pitch-offset (P < 0.001), roll-offset (P < 0.001), yaw-offset (P < 0.001), number of readjustments (P = • There was no significant difference in x-offset (P = 0.406) and z-offset (P = 0.453).

• The shim head and shoulder mask improves immobilization in ZAP-X treatments, leading to greater targeting accuracy and reduced

> , Li S, Zhou SM: Setup uncertainties in linear accelerator based stereotactic ation of the corresponding setup margin for treatment planning. Phys Med. 2016. w.orfit.com/radiation-oncology/information/thermoplastic-properties/efficast Aasks (3, 4, & 5-Point). CQ Medical.

Products/radiotherapy/thermoplastics/L-Profile-Thermoplastic-Masks.htm