MECHANOCHROMIC POLYURETHANE SHAPE MEMORY POLYMERS FOR CHRONIC WOUND INFECTION SURVEILLANCE

Thalma Orado¹, Bethany Yashkus². Samantha Zysk¹, Richard Chandradat (Ph.D.)³, Xiaocun Lu (Ph.D.)³, and Mary Beth B. Monroe (Ph.D.)¹

¹Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States

²Chemistry and Biochemistry, Wilkes University, Wilkes-Barre, PA. 18766, United States ³Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699, United States

BioInspired Institute

Post-Biofilm

Shape Recovery

MOTIVATION: Surveillance Of Infections In Chronic Wounds

- Wounds that do not reduce in size by >40-50% in a month^[1]
- Infection prevents healing [1]
 - Polymicrobial communities in biofilms:
 impenetrable to host immunity and antimicrobials
- Infection Surveillance: Symptoms, blood work, biopsy, needle aspiration, swab cultures

→ Current methods are non-specific for biofilms, painful, inefficient, and/or inhibit healing

Clinical need:

Critical need for biomaterials to improve chronic wound infection surveillance and treatment

APPROACH

Goal: Provide bacterial protease-responsive PUR shape memory polymer (SMP) with simultaneous shape and color change^[2]

Color change mechanism: Spiropyran (SP) mechanophores change to merocyanine (MC) with different color when force is applied

GOAL

A shape- and color-changing smart material for infection surveillance in chronic wounds

EXPERIMENTAL METHODS

Step 1: Solvent-Free PUR Synthesis^[3&4]

Step 2: Physical Incorporation of SP

RESULTS: Mechanochromism in PUR-SP Films

Strain and light induce mechanochromism in PUR samples containing SP

0.032%SP MC: SP Peak Area (PA) Ratio
0.063%SP
0.126%SP
0.0126%SP
0.0126%SP
0.0150
0.0320
0.0126
SP Concentration

■ 0.015%SP

- Fluorescence ↑ with (1) increased SP content up to 0.063% and (2) strain application.
- ✓ SP conversion to MC ↑ in strained samples.
- ✓ SP conversion occurs at onset of plastic deformation.

PUR samples with SP have tunable color changing capabilities with strain application

RESULTS: Color change with recovery

SP to MC conversion that occurs with straining is reversed by shape recovery via heating

Bacterial protease-responsive PUR-SP undergoes significant shape recovery after incubation with S. aureus, which (1) inhibits biofilm formation and (2) induces MC to SP conversion to provide color change with shape change.

CONCLUSIONS & FUTURE WORK

SP-containing protease-responsive PURs change shape and fluorescence in the presence of bacteria while preventing biofilm formation -> SP-containing PUR could enable shape- and color-based

PUR could enable shape- and color-based surveillance of infections in chronic wounds

Current work: Altering chemistry to achieve eye detectable color changes.

ACKNOWLEDGEMENTS

BioInspired Syracuse Seed Funding

1. Ramezani, M., Getya, D., Gitsov, I. & Monroe, M. B. B. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications. J. Mater. Chem. B 12, 1217–1231 (2024).

2. Ramezani, M. & Monroe, M. B. B. Biostable Segmented Thermoplastic Polyurethane Shape Memory Polymers for Smart Biomedical Applications. ACS Appl. Polym. Mater. 4, 1956–1965 (2022).