Standardizing Wound Tissue Type Assessment: Evaluating Reliability Using an Al-Based System SWIFT® Among Clinicians with Different Experience Levels: A Cross-Sectional Study

Introduction

- Accurate wound assessment is essential for effective management, especially for complex and treatmentresistant wounds.¹
- Wound care relies on evaluating tissue types as each indicate a different stage of the healing process yet assessments vary among clinicians.²
- Subjectivity in manual wound evaluation can impact treatment decisions and healing outcomes.³
- Al-driven wound care technologies (Al-WCT) have emerged as promising tools to standardize assessments improve measurement precision, and enhance reliability across clinicians with various experience levels.⁴

• This study applies cutting edge computing Al—previously validated and trained using thousands of images.⁵

Objective

• This study assesses inter- and intra-rater reliability of AI-WCT in wound tissue classification across clinicians with varying experience levels.

Methodology

- **Study Design:** Cross-sectional reliability study conducted during a single clinic visit.
- Intra-rater Reliability (Tissue Types):
 - Two raters—a wound care physician and a nurse —independently assessed 20 wound cases twice using AI-WCT to classify and quantify wound tissue types (granulation tissue, slough and eschar).
- Inter-rater Reliability (Tissue Types):
 - Three raters— a wound care physician, a nurse and a medical resident— assessed 17 wound cases for consistency
 - Raters used AI-WCT to independently classify wound tissue types and quantify the tissue composition.
- AI-WCT process:
 - The AI-tool provided an automated wound edge tracing. Clinicians had the ability to manually adjust the wound margins as needed
 - Raters did not communicate during assessments.

 Analysis: Intraclass Correlation Coefficient (ICC) was used to assess consistency in classification and quantification of tissue types.

Heba Tallah Mohammed,¹ Sheila Wang,^{1,2,3} Samantha Bestavros,³ Kaitlyn Ramsay,³ Ryan Geng,³ Samiha Mohsen,³ Katerina Bavaro,³ Robert D. J. Fraser, ^{1,3} ¹ Swift Medical, Toronto,² Women College Hospital,³ Temerty Faculty of Medicine, University of Toronto ⁴ Arthur Labatt Family School of Nursing, Western University,

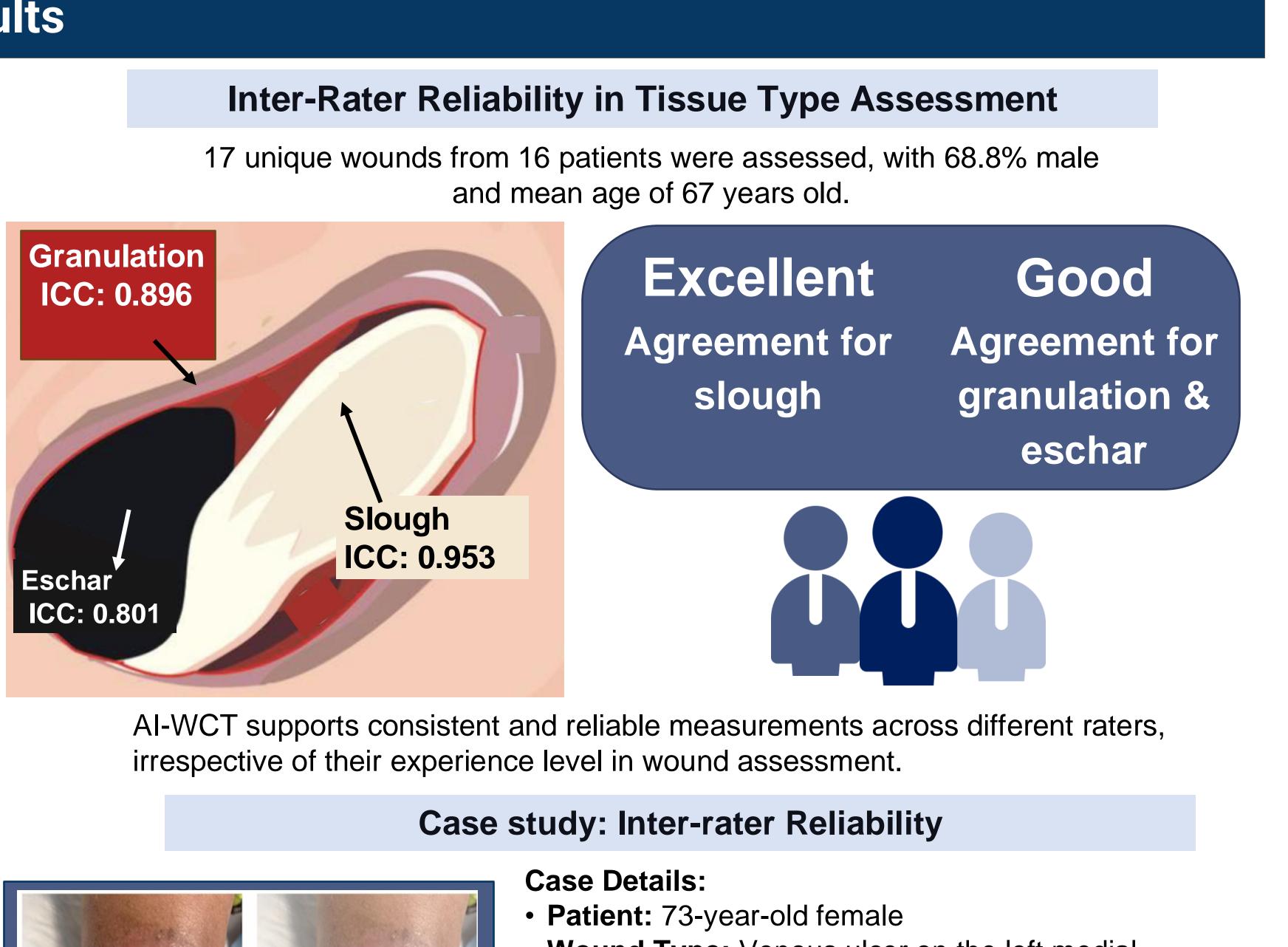
Intra-Rater Reliability in Tissue Type Assessment

20 unique wounds from 19 patients were assessed, with 70% male. The most common wound type was venous ulcers (55%), followed by pressure injuries (30%), abrasion, arterial ulcers and skin tears each accounted for 5%.

Demonstrated a near-perfect consistency in repeated measures.

Case study: Intra-rater Reliability

Case Details:


- **Patient:** 96-year-old male • Wound Type: Venous ulcer on the left medial malleolus
- Tissue Composition:
- 50% granulation tissue and 10% slough Assessment Consistency:
- Clinicians quantified tissue types identically with repeated assessments, indicating high intra-rater agreement.

Discussion

- The near perfect intra-rater agreement suggests a high precision and minimal variability for the same rater in identifying and quantifying wound tissue types with repeated measures.
- Similarly, the strong inter-rater observed suggest that the AI-WCT supports reliable measurements across different raters, ensuring highly reproducible results. Al can reduce human variability in quantifying tissue types, thus, standardizing tissue classification among different users.
- Improving objectivity and reproducibility in practice are essential for tracking wound progress and making treatment decisions.
- Because of the high agreement, AI-assisted wound assessment tools could be instrumental in multi-clinician settings, enhancing the quality of documentation and ensuring consistent evaluations across providers for better wound progress tracking.

Results

- Care. 2015 Sep;4(9):560-82.

- Technologies: An Emerging Tool in Clinical Practice. Br J Dermatol. 2019;181(6):1155-1157.
- 22;10(4):e36977.

- Wound Type: Venous ulcer on the left medial malleolus
- Tissue Composition:
- Rater 1: 40% granulation and 50% slough
- Rater 2: 40% granulation and 50% slough
- Rater 3: 30% granulation and 50% slough
- Assessment Consistency: Clinicians showed identical quantification of slough, and minor variability for granulation, suggesting strong reliability

References

1. Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound

2.Falanga V. Wound healing and its impact on the quality of life. Advances in Skin & Wound Care. 2005;18(6):319-321. doi:10.1097/00129334-200507000-00010. 3. Atkin L, Bućko Z, Montero EC, et al. Implementing TIMERS: The race against hardto-heal wounds. J Wound Care. 2019;28(Sup3). doi:10.12968/jowc.2019.28.Sup3.S1 4. Shamloul A, Daskalopoulou SS, Daskalopoulos G. The Surge of Digital Wound Care

5.Ramachandram D, Ramirez-GarciaLuna JL, Fraser RDJ, Martínez-Jiménez MA, Arriaga-Caballero JE, Allport J. Fully Automated Wound Tissue Segmentation Using Deep Learning on Mobile Devices: Cohort Study. JMIR MHealth UHealth. 2022 Apr

