Validation of a Stickerless, Digital Automatic-Depth Measurement Feature within a Multi-Modal Wound Imaging Device

Danielle Dunham¹, Claudio Irrgang¹, Ben Gidalevich¹, Jeffrey Kirman¹, Nikola Andric¹, Desmond Hirson¹, Micaela D Gray¹, Carolina Wuesthoff¹

UNMET CLINICAL NEED

There is significant inaccuracy & inconsistency associated with manual wound depth measurements (probe + ruler). This inaccurately reflects a wound's healing progress.

Why?

- Deepest point of a wound is subjective
- Pressing on tissues (tissue distortion) leads to overestimation
- Incorrect technique or differences in technique between providers

Digital methods for wound depth measurement produce more reliable & consistent results. with less patient discomfort.

STUDY AIM

A two-part study validating the performance of a stickerless digital automatic-depth measurement feature within a multi-modal wound imaging device (MolecuLightDX[®]).

MolecuLight, Inc., Toronto, ON Canada; 2VATA Inc., Oregon USA; 3Artec 3D, Senningerberg, Luxembourg

STUDY DESIGN

A statistically powered validation study of stickerless digital wound depth measurement using MolecuLightDX[®]

Study Elements	Part 1: Benchtop testing of wound models	Part 2: Clinical testing of real wounds
True depth reference	Calibrated, highly accurate Artec Leo 3D scanner ³	
N testers (intended users)	Five (5)	Four (4)
N wounds tested	17 (range of sizes, skin tones, wound types)	34 (range of sizes, skin tones, wound types)
N depth measurements per wound	Three (3)	Two (2)
Performance measures assessed	 Accuracy (Error%) Intra-user and inter-user reliability (interclass correlation coefficients, or ICC) 	

Artec Leo 3D Scanner Accuracy: ± 0.1 mm

Some of the 3D Vata Wound Models² used: [left to right] Annie, Seymour, Wilma

Autodepth 3D renderings of a real wound.

STUDY PROCEDURE

- Prior to testing, all study participants were trained on MolecuLightDX[®] wound measurement, including AutoDepth
- True depth wound measurements for wound models & clinical testing were taken with Artec Leo 3D scanner³

Benchtop testing of wound models:

Five intended users...

- 1. Capture 3D scans & wound measurement images.
- 2. Refine the wound border, perform AutoDepth measurement.
- 3. Record wound measurements & repeat until each model is imaged 3 times.

Clinical testing of real wounds:

Two clinical users...

- in a clinical setting
- 1. Re-measure each wound image, refine the wound border, perform AutoDepth measurement.
- of two depth measurements

MolecuLight**DX**®

Wound Model

STUDY RESULTS

MolecuLightDX AutoDepth measurement was highly accurate with excellent reproducibility.

Measure	Part 1: Benchtop testing	Part 2: Clinical testing
Error	±0.87 mm	±0.97 mm
Intra-user ICC	0.999 (95% Cl 0.997, 1)	0.992 (95% Cl 0.984, 0.996)
Inter-user ICC	0.998 (95% CI 0.996, 0.999)	0.997 (95% CI 0.994, 0.998)

Intra-user = measurement variability from same user; Inter-user = measurement variability between users; 95% CI = 95% confidence interval; ICC = interclass correlation coefficient.

Real Patient Wounds

Overall Impressions: This feature speeds up the clinical workflow by providing contactless digital wound depth measurements alongside co-registered bacterial fluorescence images & wound length, width, and area measurements.

> Objective, bedside information from MolecuLight**DX**[®] enhances wound care.

1. Capture 3D scans & wound measurement images

Four intended users...

- 2. Record wound measurements & repeat for a total

- Data analysis:
- 1. Accuracy measures were determined using the depth reference measurements*.
- 2. Intraclass correlation coefficients (ICC) for intra- and inter-user variability were also calculated using a 2-way random effects ANOVA model*.