
Predicting Discharge Walking Ability in Diabetic Foot Ulcer Patients Using Machine Learning

Hisae Hayashi¹, Kenichi Kono², Kazuki Kimura³, Shinsuke Imaoka⁴, Naoya Oseki⁵, and Nobuhide Kawabe⁶

1. Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Aichi, Japan; 2. School of Health Sciences at Fukuoka, International University of Health and Welfare; 3. Niigata University of Rehabilitation; 4. Oita Oka Hospital; 5. Tokyo Medical University Ibaraki Medical Center; 6. Tohto University

Retrospective

multicenter

Introduction

Diabetic foot ulcer (DFU) is a common complication of diabetes, significantly impacting mobility and quality of life.

Assessing walking ability at discharge provides a critical measure of rehabilitation success.

This study leverages machine learning techniques, decision trees to identify factors influencing discharge walking ability and improve predictive accuracy.

Study design

Patients and study setting

Patients admitted for DFU treatment at 11 hospitals (April 2021–March 2023)

<u>к</u>

Chart review abstraction (March 2024–June 2024)

Wound characteristics

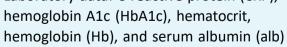
(wound, ischemia, and foot

infection [WIfI] classification)

Rehabilitation interventions

Walking ability at discharge

(three classes)


Patient demographics (age, sex, height, and body weight)

Complications like hypertension, coronary artery disease, Lower Extremity Arterial

Disease (LEAD), and hemodialysis (HD) Laboratory data: C-reactive protein (CRP),

Class 1

Class 2 Able to walk with assistive devices

Data collection

Class 3 Independent walk

Table 1: Patient's backgroun Number of subjects	ble 1: Patient's background Number of subjects (N = 303)				
Male (n = 194)	Female (n = 109)				
Characteristics	Numbers/values				
Age (years)	74 ± 17				
Weight (kg)	58.2 ± 19.1				
Height (m)	1.61 ± 0.14				
Body mass index (kg/m2)	23.6 ± 3.6				
Hypertension (%)	198 (65.3)				
Coronary artery disease (%)	186 (61.4)				
LEAD (%)	247 (81.5)				
HD (%)	116 (38.3)				

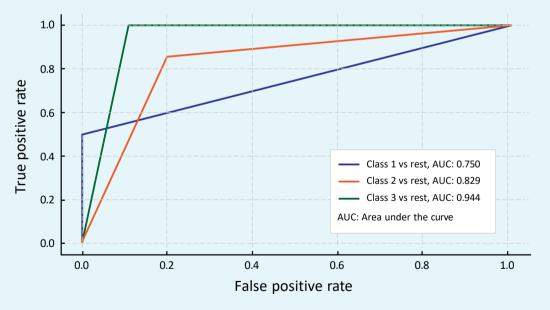
Table 2: Laboratory data

Indices	Values
CRP	3.50 (10.85)
HbA1c	6.60 (1.90)
Hematocrit	35.10 (7.60)
Hb	11.40 (2.45)
Alb	3.20 (0.70)

Table 3: Wound characteristics (WIfl classification)

Score	Wound	Foot infection		
Score 0	5 (1.7%)	61 (20.1%)		
Score 1	105 (34.7%)	104 (34.3%)		
Score 2	118 (38.9%)	86 (28.4%)		
Score 3	37 (12.2%)	12 (4.0%)		
Missing data	38 (12.5%)	40 (13.2%)		

Results


FIM Locomotion Score (discharged)

- Severity of foot infection

Walking ex. with offloading device

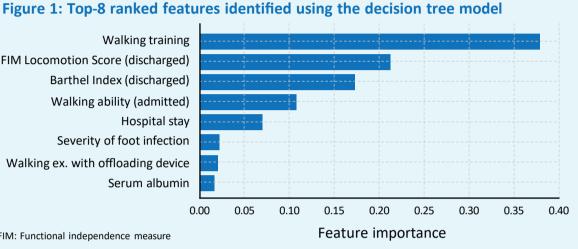

FIM: Functional independence measure

Figure 2: Receiver operating characteristic plots for the top-8-ranked features utilizing the walking ability at discharge

Table 4: Average performance matrix							
Class	Sensitivity	Specificity	Accuracy	Precision	F1 score		
Class 1 vs rest	0.50	1.00	0.92	1.00	0.67		
Class 2 vs rest	0.86	0.80	0.83	0.86	0.86		
Class 3 vs rest	1.86	0.89	0.92	0.75	0.86		

Statistical analysis

- Data were presented as proportions, means ± stand deviation (SD), or median (IQR), and analyzed using SPSS[®] Version 29.0 (IBM Corporation, Armonk, NY, USA).
- A decision tree model was developed with an 80–20% train-test split, imputing missing values and normalizing continuous variables.
- · Feature importance identified key predictors and model performance was evaluated using sensitivity, specificity, accuracy, precision, F1 score, and AUC.

Ethical considerations

This study was approved by the ethics committee of Aichi, Shukutoku University (Approval No. 2023-3), and the Clinical Research Committee of 11 hospitals.

Discussion/conclusion

Walking training, functional independence, and nutritional status (albumin) are key factors influencing discharge walking ability. A multidisciplinary approach integrating physical therapy, nutrition, and discharge planning is essential for optimal outcomes. Machine learning holds the potential to predict walking ability for personalized rehabilitation. However, larger studies are needed to validate and refine clinical applications.

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number JP23K10415 and Aichi Shukutoku University Research Grant 23TT19.

