

Omadacycline for Skin and Soft Tissue Infections: A Multicenter Retrospective Analysis of Efficacy and Safety in Real-World Clinical Practice

Mohammed Al Musawa, PharmD, BCIDP¹; Andrea Banks, MD²; Karan Raja, PharmD, BCPS, BCIDP, AAHIVP³; Mohammed Saeedi, MD⁴; Monica Mahoney, PharmD, BCPS, BCIDP, FCCP, FIDSA, FIDP⁵, Kyle C. Molina, PharmD, BCIDP⁶; Madison Salam, PharmD⁷; Emily Sinclair, PharmD, BCPS, BCIDP⁸; Taryn A. Eubank, PharmD, BCIDP⁹; Maureen Campion, PharmD, BCIDP⁴; Sean Van Helden, PharmD¹, Michael J. Rybak, PharmD. MPH, PhD, FIDSA^{1,10}

Address correspondence to:

Michael J. Rybak
m.rybak@wayne.edu

¹Anti-Infective Research Lab, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; ²Lexington Infectious Disease Consultants, Baptist Health Lexington, Lexington, Kentucky; ³Clara Maass Medical Center, Belleville, New Jersey; ⁴Tufts Medical Center, Boston, Massachusetts; ⁵Beth Israel Deaconess Medical Center, Boston, Massachusetts; ⁵Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA; ¹University of Colorado Health, Aurora, Colorado; ³Cone Health, Kernersville, North Carolina, United States; ³Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA; ¹¹Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA.

Background

- Skin and soft tissue infections (SSTIs) present significant challenges in clinical practice, especially due to the growing issue of antibiotic resistance¹
- Omadacycline a first-in-class aminomethylcycline, provides broad-spectrum activity and is available in both oral and intravenous formulations²
- Omadacycline was approved in 2018 for the treatment of adult patients with acute bacterial skin and skin structure infections (ABSSSI) and community acquired bacterial pneumonia²
- Studies assessing omadacycline for treating SSTIs in real-world setting are lacking

Study objective:

This study aims to assess the real-world effectiveness and safety of omadacycline in treating SSTIs.

Study design

• A multicenter, retrospective, observational, descriptive analysis of patients treated with omadacycline between July 2019 and December 2023

Methods

Inclusion

- Age ≥ 18 years
- Received omadacycline for ≥ 48 hours
- Patients with a SSTI

Outcomes

- Primary outcome: clinical cure, defined as the absence of any signs or symptoms of infection during treatment or within 14 days after discontinuation of omadacycline
- **Secondary outcome**: Incidence of adverse effects related to omadacycline

Analysis

 Mean (standard deviation [SD]), median (interquartile range [IQR]), n (%), and comparative analyses were performed with SPSS v. 29.0 (IBM Corp, Armonk, NY, USA)

Results

Table 1. Baseline demographics ^a		
	Overall (n= 24)	
Age, median (IQR)	63 (48.0–70.3)	
Caucasian	18 (75.0)	
Female	12 (50.0)	
BMI (kg/m²), median (IQR)	35.5 (26.1–45.3)	
Obesity (BMI ≥30 kg/m²)	14 (58.3)	
Creatinine clearance (mL/min), median (IQR)	65.8 (35.1 – 119.5)	
Treatment setting		
Strictly inpatient	9 (37.5)	
Strictly outpatient	12 (50.0)	
Inpatient, then outpatient	3 (12.0)	
Charlson comorbidity index, median (IQR)	6.5 (2.0 – 9.3)	
Immunosuppression factors ^b	6 (25.0)	
Clinical presentation		
WBC >12 x 10 ⁹ /liter or < 4 x 10 ⁹ /liter or >10% bands	10 (41.7)	
Heart rate >90 beats/min	10 (41.7)	
Respiratory rate >20 breaths/min	5 (20.8)	
Temperature <35.6°C or >38°C	4 (16.7)	
≥2 SIRS criteria	8 (33.3)	
a data presented as n (%) or otherwise specified		

a data presented as n (%) or otherwise specified.

b Absolute neutrophil count <500, CD4<200 or AIDS defining illness, splenectomy, solid organ transplant in past 90 days, bone marrow transplant in past 90 days, cytotoxic chemotherapy in past 90 days, high dose steroids (>200 mg hydrocortisone for ≥2 weeks or equivalent)

Table 2. Infection and treatment characteristics

	Overall (n= 24)
Culture specimen	
Wound	15 (62.5)
Tissue	7 (29.2)
Blood*	1 (4.2)
Polymicrobial infection	15 (62.5)
Surgical consultation	16 (66.7)
Planned surgical intervention for source control	
Debridement	9 (37.5)
Incision and drainage	7 (29.2)
Amputation	1 (4.2)
None	11 (45.8)
Omadacycline regimen	
Loading dose	
200mg intravenous single dose	8 (33.3)
450mg oral once daily for two days	7 (33.3)
300 mg oral twice daily for one day	1 (4.2)
No loading dose	8 (33.3)
Maintenance dose	
100mg intravenous once daily	7 (29.2)
300mg oral once daily	16 (66.7)
300mg oral twice daily	1 (4.2)
Type of treatment	
Targeted	15 (62.5)
Empiric	7 (29.2)
Suppression	3 (12.5)
Duration of omadacycline therapy, days, median (IQR)	13.5 (6.3 – 33.0)

abbreviations: IQR, interquartile range; PICC, peripherally inserted central catheter; SIRS, systemic inflammatory response syndrome; WBC, white blood cell

*The isolated pathogen from blood was vancomycin resistant *Enterococcus faecium**The isolated pathogen from blood was vancomycin resistant *Enterococcus faecium**The isolated pathogen from blood was vancomycin resistant *Enterococcus faecium*

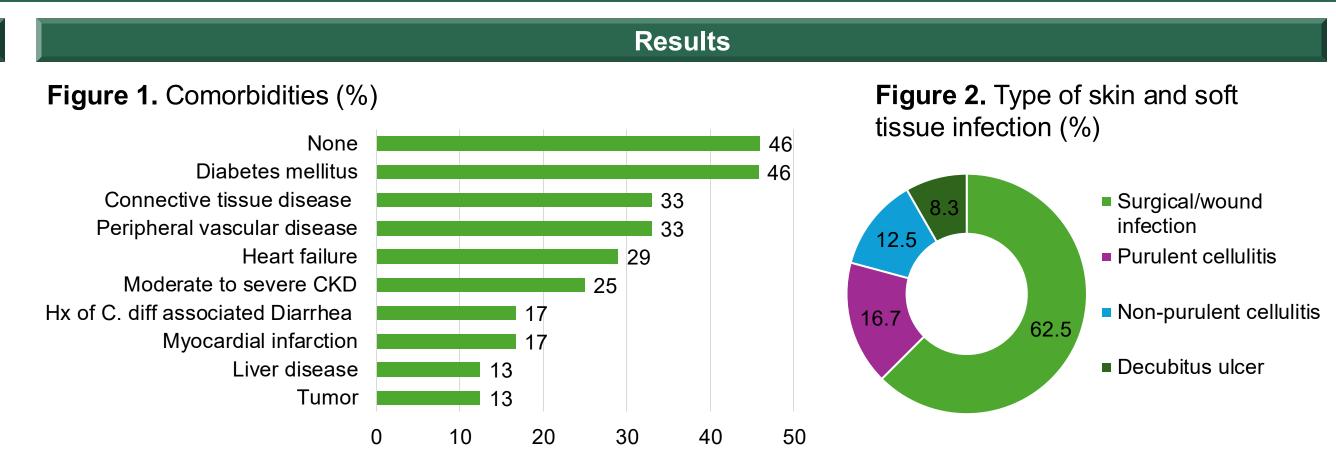


Figure 3. Reasons for omadacycline utilization (%)

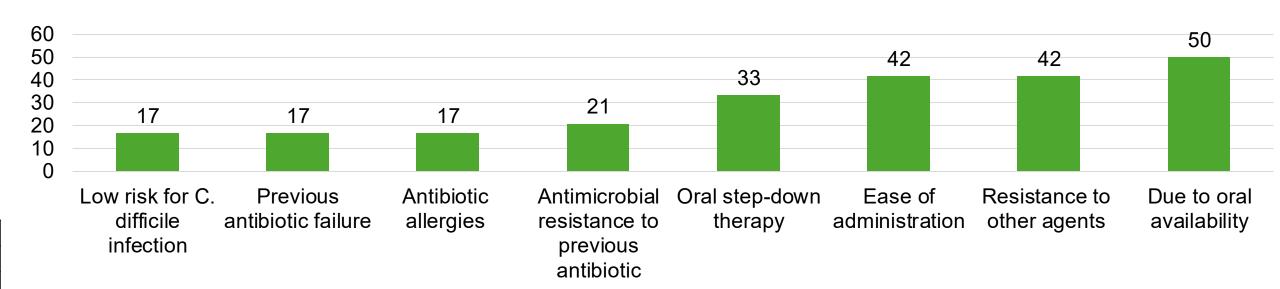


Figure 4. Pathogens omadacycline used for (%)

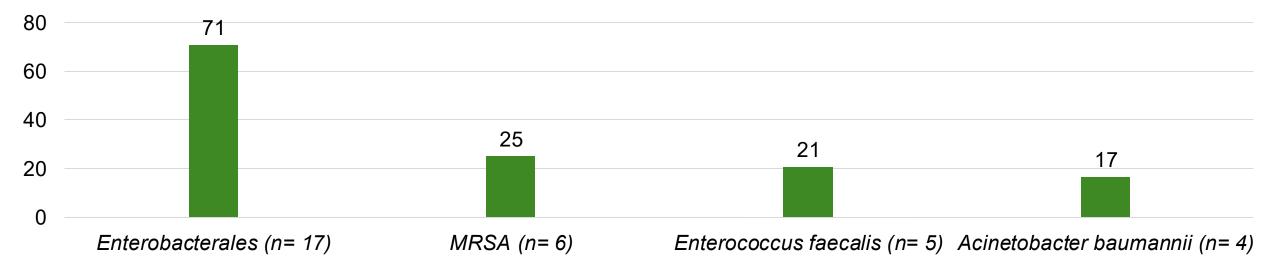


Table 3 Clinical outcomes

rable 3. Chilical dutcomes	
	Overall (n = 24)
Clinical cure	21 (87.5)
Adverse effects	
Gastrointestinal intolerance	2 (8.3)
Electrolyte disturbance	1 (4.2)
Discontinuation secondary to an adverse effect	0 (0.0)

Conclusions

- Omadacycline demonstrated promising efficacy and tolerability in treating SSTIs, with a high clinical cure rate of 87.5% and minimal adverse effects.
- These results are encouraging and in line with the results of the registrational trials. Larger realworld studies are warranted.

References: 1. Eisenstein BI. Treatment challenges in the management of complicated skin and soft-tissue infections. Clin Microbiol Infect. 2008 Mar;14 Suppl 2:17-25. doi: 10.1111/j.1469-0691.2008.01922.x. PMID: 18226086. 2. Gallagher JC. Omadacycline: amodernized tetracycline. Clin Infect Dis. 2019;69:S1-5.

Disclosure: This study was funded by an investigator-initiated grant from Paratek Pharmaceuticals