

ABSTRACT / OBJECTIVES

Context:

• The COVID-19 pandemic significantly affected children's health, contributing to higher BMI and increased risk of dental caries.

Rationale:

• This study examines the impact of pandemic-related changes on BMI and dental health in children aged 6-12 in San Antonio, Texas.

Objectives:

- Analyze BMI trends pre- and post-pandemic using UT Health San Antonio medical records.
- Examine the link between high BMI and sugar-rich diets, which increase dental caries risk.

Role of Pediatric Dentists:

• Biannual visits to monitor BMI, provide nutritional counseling and detect systemic conditions (e.g., type 2 diabetes, sleep apnea).

MATERIALS and METHODS

Data Source:

•1,520 participants from UT Health San Antonio medical and dental initial records.

Inclusion criteria ASA 1 and 2.

•Exclusion missing records, significant health conditions or prior weight management interventions.

Study Periods:

•Pre-pandemic: 2017–2019.Post-pandemic: 2021–2023.

Key Parameters:

•BMI levels. Dietary habits. Dental caries prevalence, age and gender.

Shift in BMI among the pediatric population in San Antonio, Texas: Pre-and Post-COVID-19 Implications in Pediatric Dentistry

Annely C. Ugas

The University of Texas Health Science Center at San Antonio, School of Dentistry

RESULTS

BMI Increase:

 Post-pandemic children showed higher BMI due to reduced ph activity and sedentary lifestyles.

Dental Caries Association:

 Children with higher BMI were more prone to dental caries due rich diet.

Data analysis:

 Linear regression confirmed a significant trend in BMI amore aged 6–12, with a marked spike in 2021.

- Gender distribution remained balanced across all years. A new pandemic increase in BMI, particularly **among males**.
- Logistic regression further demonstrated caries risk assessment (CRA) increased significantly, showing a consistent rise from 2018 onward and persisting through the post-COVID years.

Table 1. Estimate for each year stratified by gender

Characteristic	Overall , N = 1,318 ¹	2017 , N = 211 ¹	2018 , N = 239 ¹	2019 , N = 233 ¹	2021 , N = 178 ¹	2022 , N = 208 ¹	2023 , N = 249 [†]	p- value ²
AGE	8.76 2.00	8.87 1.86	8.84 2.00	8.81 2.14	8.87 1.97	8.60 1.91	8.61 2.05	0.5
GENDER								0.4
F	642 (49%)	91 (43%)	122 (51%)	115 (49%)	85 (48%)	97 (47%)	132 (53%)	
М	676 (51%)	120 (57%)	117 (49%)	118 (51%)	93 (52%)	111 (53%)	117 (47%)	
BMI	19.2 4.9	19.0 4.2	19.1 4.9	19.0 4.7	20.3 6.2	19.1 4.9	18.8 4.7	0.2
Unknown	4	1	1	0	1	1	0	
CRA								<0.001
L	16 (1.2%)	6 (2.8%)	4 (1.7%)	2 (0.9%)	0 (0%)	2 (1.0%)	2 (0.8%)	
А	252 (19%)	66 (31%)	57 (24%)	44 (19%)	25 (14%)	34 (16%)	26 (10%)	
Н	1,050 (80%)	139 (66%)	178 (74%)	187 (80%)	153 (86%)	172 (83%)	221 (89%)	
¹ Mean SD; n (%)								

Table 2. Caries Risk Assessment over time.

RESULTS (cont.)

	Characteristic Beta 95% Cl ⁷ p-value	Characteristic OR ⁷ 95% Cl ⁷ p-value
	AGE	AGE
nysical		AGE 0.00 0.00, 0.00 <0.001
	AGE 61 51,70 <0.001	AGE ² 0.67 0.00, 113 0.9
	AGE ² -6.1 -15, 3.0 0.2	GENDER
	GENDER	F — —
	F — —	M 110 000 155 0.2
	M 0.21 -0.29, 0.72 0.4	IVI 1.10 0.09, 1.55 0.5
to a sugar-	Year	Year
	2017 — —	2017 — —
	2018 0.11 -0.75, 0.97 0.8	2018 1.55 1.02, 2.34 0.039
	2019 0.14 -0.73, 1.0 0.8	2019 2.17 1.40, 3.38 < 0.001
	2021 1.3 0.37, 2.2 0.006	2021 3.29 1.99, 5.58 < 0.001
ona children	2022 0.34 -0.55, 1.2 0.4	2022 2.43 1.54, 3.89 < 0.001
ong onnaron	2023 0.01 -0.84, 0.87 >0.9	2023 4.13 2.55, 6.85 < 0.001
	[†] CI = Confidence Interval	[†] OR = Odds Ratio, CI = Confidence Interval
otable post-	Table 3. Linear regression adjusted by age in quadratic form, gender, and year.	Table 4. Caries Risk Assess regression by age, gender, a

- CONCLUSIONS
- A significant post-pandemic increase in BMI among children aged 6–12 in San Antonio, Texas, with the most pronounced spike observed in 2021.
- The persistent upward trend in BMI levels through 2023 underscores the enduring impact of the COVID-19 pandemic on pediatric health.
- The prevalence of high caries risk assessment (CRA) since 2018, exacerbated during the post-pandemic years.
- These findings emphasize the interconnected nature of systemic and oral health, particularly in children with high BMI.
- The study underscores the critical role of pediatric dentistry in addressing these dual challenges.
- Public health interventions and preventive dental care are essential to mitigate the long-term effects of the pandemic on children's health and promote healthier lifestyles.

Acknowledge

I am grateful to Dr. Sohini Dhar and Dr. Eliza Perez for their invaluable supervision, and to Professor Dr. Gary F. Guest and Jerred Kite for their support in data recollection. I extend my thanks to UT Health San Antonio for granting access to their records and to Jonathan Gelfond for his statistical expertise.

Finally, I deeply appreciate the unwavering support of my husband, **Daniel Ugas**, and my children, Daniel Ugas and Miriel Ugas.

ment logistic and year

