# Efficacy and Safety of Intranasal Dexmedetomidine for Pediatric Sedation Dentistry

Caleb Widner, DDS<sup>1</sup>, Bethany K White, DDS<sup>1</sup>, Jacqueline Yip, DMD,<sup>1</sup>Yanelis Mestre, DMD,<sup>1</sup>John H Unkel, DDS, MD, MPA,<sup>1</sup> Elizabeth J Berry DDS, MSD, MPH<sup>1</sup> <sup>1</sup>Bon Secours St. Mary's Hospital of Richmond, Richmond, VA



#### PURPOSE

The purpose of the study aimed to assess the safety and effectiveness of intranasal dexmedetomidine as a sedative for pediatric dental procedures, comparing it to oral midazolam alone and in combination with hydroxyzine.

### BACKGROUND

- Moderate in-office sedation is commonly used to facilitate dental treatment in anxious, fearful, and uncooperative patients.<sup>1,2</sup>
- Due to the discontinuation of commercially produced chloral hydrate and the heightened risks associated narcotics, such as respiratory depression, alternative medications for dental sedation are needed.<sup>3</sup>
- Dexmedetomidine is a selective alpha-2 agonist that induces sedation, mild analgesia, anxiolysis while preserving respiratory function and maintaining airway integrity.<sup>4</sup>
- A key characteristic of dexmedetomidine based sedation is its similarity to natural sleep, allowing the patient to remain easily arousable.<sup>5</sup>
- Dexmedetomidine has been effectively used for pediatric procedural imaging and as a premedication before general anesthesia.
- Retrospective studies show that intranasal dexmedetomidine, when combined with nitrous oxide, is a safe and effective option for moderate sedation in pediatric dental procedures.<sup>8,9</sup>
- A prospective study of dexmedetomidine is needed in pediatric moderate sedation dentistry to assess effectiveness and safety.

#### REFERENCES

- Clanetti S, Lombardo G, Lupatelli E, et al. Dental fear/anxiety among children and adolescents. A systematic review. Eur J Paediatr Dent. 2017; 18 (2): 121-30.
- Wilson S, Houpt M, "Prosject USAP 2010: Use of Sedative Agents in Pediatric Dentistry a 25 Year Follow-up Survey" Pediatric Dent. 2016; vol. 38, no 2, pp. 127-33.
- Nordt S, Rangan C, Hardmaslani M, Clark R, Wendler C, Valente M, "Pediatric chloral hydrate poisonings and death following outpatient procedural sedation" J Med Toxicol. 2014; vol. 14, no. 10, pp. 219-22.
- Mason KP, Lerman J. Review article: Dexmedetomidine in children: current knowledge and future applications. Anesth Analg. 2011;113(5):1129-42.
- ElKhatib AA, Ghoneim TAM, Dowidar KML, Wahba NA. Effect of Dexmedetomidine with or without Midazolam during
  procedural dental sedation in children: a randomized controlled clinical trial. BMC Oral Health.
- Mason KP, Zurakowski D, Zglesweski SE. High dose dexmedetomidine as the sole sedative for pediatric MRI. Pediatric Anaesth. 2008; 18(5): 403-11.
- Mason KP., Robinson F., Fontaine P., Rescilla R. Dexmedetomidine offers an option for safe and effective sedation for nuclear medicine imaging in children. Radiology. 2013; 267(3): 911-17.
- Unkel JH, Cruise C, Rice A et al. A retrospective evaluation of the safety profile of dexmedetomidine and nitrous oxide for pediatric dental sedation. *Pediatr Dent* 2021;42(2):129-3.
- Unkel JH, Berry EJ, Ko BL, et al. Effectiveness of intranasal dexmedetomidine with nitrous oxide compared to other pediatric dental sedation drug regimens. *Pediatr Dent* 2021; 43(6): 457-62.

# METHODS

- A prospective randomized control trial.
- Inclusion criteria: 3-6 years old, ASA I or II, English speaking.
- Patients were randomized and received one of the following medication regimen:
  - 3 μg/kg intranasal dexmedetomidine<sup>a</sup> (DEX).
  - 0.7 mg/kg oral midazolam<sup>a</sup> (MID).
  - 1 mg/kg oral hydroxyzine<sup>a</sup> with 0.7 mg/kg oral midazolam (MIDHYD).
- All patients received nitrous oxide sedation during treatment with a concentration of 65% at a calculated flow rate during treatment.
- Demographic data, procedural times, minor and major adverse events, and quality of sedation were identified and recorded.
- Effectiveness of sedation was determined by utilizing a behavior scale modified from the American Academy of Pediatric Dentistry (AAPD) (Figure 1). Sedation was effective if the treatment was completed and had a behavior score of 0 to 2. A score of 3 or 4 in either category was graded as ineffective.
- Per Michigan Sedation Scale, sedation was considered effective if it scored 0-2

 $^{\rm a}$  maximum dose for intranasal dexmedetomidine is 100  $\mu g$  , for oral hydroxyzine is 25 mg, and for oral midazolam is 20 mg.

## **DATA ANALYSIS**

Descriptive statistics were conducted. Confidence intervals and hypothesis testing will be conducted at the conclusion of the trial.

| Sedation Score |                                                                                              |  |
|----------------|----------------------------------------------------------------------------------------------|--|
| 0              | None (typical response/cooperative for this patient)                                         |  |
| 1              | Mild (anxiolysis), tired, verbally responsive                                                |  |
| 2              | Moderate (purposeful response to verbal commands light tactile sensation), somnolent         |  |
| 3              | Deep (purposeful response after repeated verbal or painful physical stimulation), deep sleep |  |
| 4              | General anesthesia (unarousable)                                                             |  |
| Behavior Score |                                                                                              |  |
| 0              | Excellent (quiet and cooperative)                                                            |  |
| 1              | Good (mild objections and/or whimpering but treatment not interrupted)                       |  |
| 2              | Fair (crying with minimal disruption to treatment)                                           |  |
| 3              | Poor (struggling that interfered with operative procedures)                                  |  |
| 4              | Prohibitive (active resistant and crying, treatment cannot be rendered)                      |  |

#### Figure 1: Modified AAPD Score

# RESULTS

- Sixty-seven children were included in the preliminary analysis. The sedation modality groups, demographic distribution, and treatment completion rates are shown in Tables 1 and 2.
- The sedation level and efficacy for the DEX group was consistent with the other sedation modalities.
- No episodes of bradycardia occurred in any group.
- In the dexmedetomidine group, the PALS score indicated hypotension in 7 cases, however no intervention was needed.
- There were no major adverse events for any group.

| Males          | 54% |
|----------------|-----|
| Females        | 46% |
| Black          | 54% |
| White          | 22% |
| Middle Eastern | 6%  |
| Asian          | 7%  |

Table 1: Patient Demographics

| Medication | Distribution | Treatment Effective |
|------------|--------------|---------------------|
| MID        | 35.8%        | 62%                 |
| DEX        | 28.3%        | 74%                 |
| MID/HYD    | 38.8%        | 54%                 |

Table 2: Sedation Modality Distribution & Treatment Completed

## CONCLUSIONS

- Dexmedetomidine shows potential to be an effective and safe medication for pediatric dental sedation.
- Dexmedetomidine provides adequate sedation treatment In comparison to oral midazolam and oral midazolam in combination with hydroxyzine.
- Limitations: small sample size, restricted inclusion criteria, and different residents completing dental treatment and sedation.