

UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

Nitrous Oxide in a Pediatric Dental Institution: **Exploring Environmental & Cost Benefits of Reduced Use**

University of Colorado School of Dental Medicine¹, The Ohio State University College of Dentistry², Nationwide Children's Hospital³

Purpose

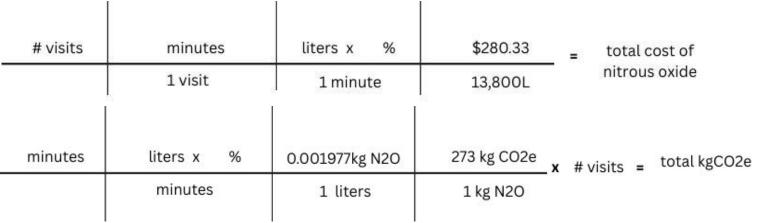
The primary objective of this study was to evaluate the environmental impact of nitrous oxide use in dental procedures at a pediatric dental institution, focusing on flow rates, concentration, and usage duration. Additionally, the study aimed to calculate the estimated financial and environmental costs of nitrous oxide usage, identifying opportunities to reduce emissions and areas for future research.

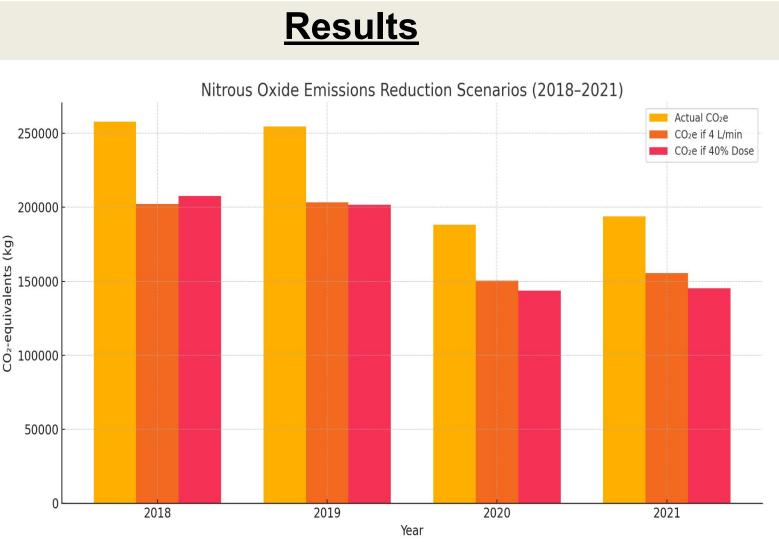
- the AAPD recommends a flow rate of **3-5 L/min** of Nitrous oxide for children at **30-40%** concentration¹
- N₂O emissions, including healthcare emissions, are currently the **single most** important ozone-depleting substance emissions⁵
- Less than 5% of volatile anesthetics are metabolized by the patient, and excess gases can contribute to environmental pollution when exhaled⁵
- N₂O warms the atmosphere **265 times** more than CO₂⁴

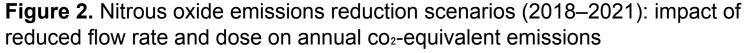
<u>Methods</u>

Retrospective Chart Review 2018-2021

• Obtained number of nitrous encounters, dose, duration, flow


Year	Encounters (n)	Dose (%)	Duration (minutes)	Flow Rate (L/min)
2018	7,732	Range: 10-70 Mean: 49.68 Median: 50 Mode: 50	Range: 2-180 Mean: 24.38 Median: 25 Mode: 20	Range: 2-6 Mean: 5.10 Median: 5 Mode: 5
2019	8,004	Range: 40-60 Mean: 50.51 Median: 50 Mode: 50	Range: 1-305 Mean: 23.29 Median: 20 Mode: 20	Range: 2-6 Mean: 5.01 Median: 5 Mode: 5
2020	5,637	Range: 10-70 Mean: 51.47 Median: 50 Mode: 50	Range: 1-180 Mean: 24.03 Median: 20 Mode: 20	Range: 3-6 Mean: 5.00 Median: 5 Mode: 5
2021	5,564	Range: 10-70 Mean: 53.42 Median: 50 Mode: 50	Range: 1-130 Mean: 24.23 Median: 20 Mode: 20	Range: 2-6 Mean: 4.99 Median: 5 Mode: 5
Total/Mean	31,783	Mean: 51.17	Mean: 23.93	Mean: 5.03


Table 1. Provider-reported nitrous oxide administration characteristics (2018–2021): dose, flow rate, and duration from clinical encounters


Figure 1. Calculation equations using nitrous oxide data and known values to find the total cost of nitrous oxide output in dollars and in kilograms of carbon dioxide equivalents

Leah Conley¹, Jennifer Luca^{2,3}

Methods Continued

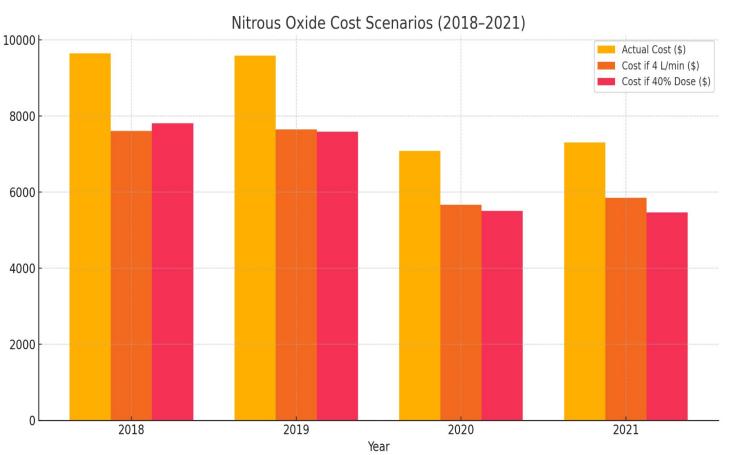


Figure 3. Cost savings potential from nitrous oxide reduction strategies (2018–2021): annual cost comparison of actual use vs. reduced flow rate and dose

Ca	arbon	Impact
~		

- # of Size G Tanks
- kg CO₂ equivalent
- # of homes powered in 1 year
- # of drives from New York to

Table 2. Projected carbon impact equivalents and reduction potential from 138 G tanks worth of nitrous oxide used during procedures at one institution (2018–2021)

- higher dose (**Table 1**).

- Anesthesiologists.
- 248-252.
- 4.
- Retrieved April 7, 2025.
 - Society of Anesthesiology.

Results Continued

	Actual 5L/min @50% NO	Reduce 4L/min OR 40% NO	Difference
	138	110	28 tanks
	912, 318	727,210 kg	185,108
	123	97.7	25.3
LA	830.6	663.5	167.1

• While individual usage patterns showed considerable fluctuation, dental providers at the institution administered nitrous oxide within clinical guidelines for flow but averaged a

• A reduction in nitrous use, within the AAPD guidelines, of either 1L/min or 10% concentration produces reductions in cost and substantial reductions in carbon impact (Fig. 2 and 3).

• A small reduction in daily use of nitrous may have considerable environmental impacts over a 4 year span (**Table 2**).

Conclusions

• Reducing nitrous oxide use—whether by duration, flow, or dose—significantly lowers kgCO₂e emissions. Even minor reductions in volume or concentration can have

substantial environmental impacts over four years.

• Significant cost savings: Lowering flow rate or dose could result in a 4-year total savings of over \$8,000.

• More research to revise guidelines would benefit nitrous emission reduction while maintaining clinical effectiveness and minimizing chronic staff exposure.

Literature Cited

American Academy of Pediatric Dentistry. (2023). Use of nitrous oxide for pediatric dental patients. In Reference manual of pediatric dentistry (pp. 397). American Academy of Pediatric Dentistry. ASA Committee on Environmental Health. (2024). Fresh gas flow management. American Society of

3. Luca, J., Tang, H., Hammersmith, K. J., Townsend, J., & Meyer, B. D. (2024). Estimated Carbon Emissions Associated With Dental Treatment For Early Childhood Caries. Pediatric Dentistry, 46(4),

U.S. Environmental Protection Agency. (2024). Greenhouse Gas Equivalencies Calculator.

Yasny, J. S., & White, J. (2012). Environmental implications of anesthetic gases. American Dental