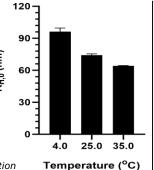

Behavior of Lipid Nanoparticles in Aqueous Formulations: Measure of LNP Attraction and Repulsion

Jaslene A. Francis¹ Leah Wright¹ Richard van Wegen² Robert J. Falconer ^{1*}

¹School of Chemical Engineering, The University of Adelaide ²BioCina Pty Ltd, Adelaide 5000

iasleneanne.francis@adelaide.edu.au

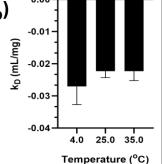

What Does Dynamic Light Scattering Measure?

Hydrodynamic Radius (R_H)

$$R_{H,0} = \frac{kT}{6 \pi \eta D_0}$$

Hydrodynamic radius at infinite dilution $(R_{H,0})$ excludes interparticle interactions.

k = Boltzmann's constant, T = Absolute temperature, $\eta = Bulk \ viscosity, D_0 = Diffusion coefficient at infinite dilution$

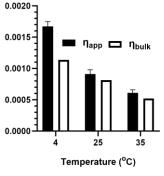


Attraction and Repulsion (k_D)

$$D = D_0 (1 + k_D c)$$

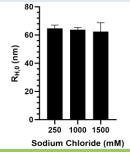
k_D values: **positive** (Repulsion); **negative** (Attraction)

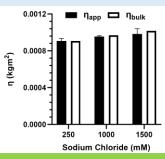
 $D = Diffusion coefficient, D_0 = Diffusion coefficient at$ infinite dilution, c = concentration

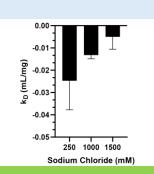


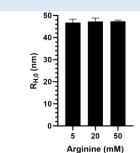
Apparent Viscosity (η_{app})

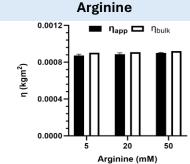
$$\eta_{app} = \frac{kT}{6 \pi R_{H,0}} D_0$$

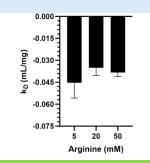

Viscosity experienced by LNP at LNP-water interface (η_{app}) differs from η_{bulk} .

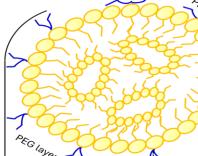

k = Boltzmann's constant, T = Absolute temperature, $R_{H.0}$ = Hydrodynamic radius at infinite dilution




Apparent Viscosity (η_{app})







References

 Sodium chloride and Arginine have no measurable effects on Lipid nanoparticles (LNP) behavior in solution.

Conclusions

- The apparent viscosity (η_{app}) decreases with increasing temperature.
- When a change in the $R_{H,0}$ of LNPs is unlikely, the apparent viscosity (η_{ann}) could change.
- Wright et al., Anal. Chem., 2025 (doi.org/10.1021/acs.analchem.4c06089).
- Francis et al., Int.J.Pharm, 2025 (Under Review).
- Francis et al., 2025 (Manuscript in progress).

Hydrodynamic Radius (RH)