Immunomodulatory effects of cholesterol oxidation products and their implications for liposomal drug delivery
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Background / Significant Results Summary

1. Characterization of Oxysterol-Loaded Liposomes

Liposome-encapsulated chemotherapies have improved pharmacokinetics and tolerability compared to

Non enzymatic oxidation

conventional drugs, yet their impact on anticancer efficacy remains uncertain. Emerging evidence . (KOS neymaie e
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and polarization, thereby affecting antitumor immunity.
1. Non-enzymatically produced

Liposomal oxysterols tend to
iIncrease the expression of
proinflammatory markers in vitro
setting.

This study demonstrates that specific oxysterols incorporated into liposomes distinctly modulate pro-
and anti-inflammatory marker gene expression in polarized and non-polarized macrophages, either Table 1. Physicochemical Characterization of Oxysterol-Containing Liposomes. Particle size, polydispersity index (PDI), particle concentration, and zeta
- - - iminichi ' ' ' potential were measured by dynamic light scattering (DLS) using the Zetasizer Ultra (Malvern, UK) after diluting 5 ul of liposomes in 995 pl of deionized water.
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of liposomal cholesterol and underscore the importance of engineering liposomal formulations that are 2. Oxysterols have a heterogeneous immune modulatory effect
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Dissection Bone Marrow Centrifugation Figure 1. Liposomal oxysterols modulate inflammatory gene expression in polarized and unpolarized bone marrow-derived macrophages (BMDMs).
oo S Expression of proinflammatory markers iNOS, IL-6, and CXCL-10, as well as anti-inflammatory markers IL-10, TGF-B, CD206, MGI2, and Retnla, was assessed
’ in unpolarized M0, M1-polarized, and M2-polarized macrophages by RT-gPCR. Gene expression was normalized to GAPDH and expressed as fold change
- e l H relative to vehicle-treated control cells. Vehicle: 0.9% saline; treatment: liposomes suspended in saline at 55.7 uM total phospholipid concentration. Data SeleCted References
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The study endpoint was a tumor volume of 1000 mm?, with the experiment lasting a total of 52 days and Days
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