In vivo metabolism of cholesterol-containing nanoparticles generates immune modulatory oxysterols
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Introduction

Although lipid nanoparticles (LNPs) prolong drug circulation, offer less toxicity, and improve drug delivery
to tumor tissues, no major increase in efficacy between liposomal versus free drug is seen in clinical
trials.! It is known that nanoparticle clearance and biological responses vary depending on macrophage
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Objectives

. Elucidate the metabolic pathways of LNP-associated cholesterol.
. Determine the metabolic fate of LNP-associated cholesterol in vitro and in vivo.
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1) Macrophage metabolism of LNP-cholesterol

primarily occurs through auto-oxidation pathways

2) LNP-associated cholesterol metabolites accumulate in tissues

oxysterol metabolites were ROS-generated (7-KC and 7-
HC), while the primarily enzymatic metabolite was 7a-HC.
C) 7-KC was the primarily oxidized product in supernatant

. 27-hydroxycholesterol (27-HC

Quantification of deuterated cholesterol and oxysterols in tissues. A) Unmetabolized LNP-associated cholesterol. B-G) Tissue
concentration of oxysterols produced by enzymatic and non-enzymatic pathways. H-I) Total tissue amount of 5,6-EC and

and cell media. Bars represent mean + SEM.

24(R)-HC. J) Total oxysterols amount in tissues. Bars represent mean + SEM.

. Understand the impact of LNP-associated cholesterol on immune response and tumor growth.

Methodology 3) LNP-associated 5,6-EC promotes tumor growth
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Tumor growth curve after liposomes
treatments. Data represent mean +
SEM. Arrows indicate |V treatments.
Day 17: 5B8,6B-EC liposome
statistically different than 24-HC
liposome (**); Day 18: 58,6B-EC
liposome statistically different than
vehicle (*) and 24-HC liposome (**);
Day 19: 58,6B-EC liposome
statistically different than vehicle (**)
and 24-HC liposome (***); and Day
20: 5B,6B-EC liposome statistically
different than 24-HC liposome (**).
Statistical comparison by two-way
ANOVA and Tukey for multiple
comparisons (*p<0.05; **p<0.01;
***<0.001).

4) LNP-associated 24-HC induces immunogenic cell death in vivo
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A) Immunofluorescence images show nuclei (blue) and HMGB1 (red). B) Bars represent
average of binary area + SEM; Statistical comparison by one-way ANOVA and Tukey for
multiple comparisons (*p<0.05).

Conclusions

. There was a predominance of
non-enzymatic oxysterols
generated from liposomes by
macrophages in vitro.

. The predominant deuterated-
oxysterols produced by
enzymatic oxidation in tissues
were 24-HC and 27-HC.

. The predominant ROS-
generated oxysterols in tissues
were 5,6-EC and 7-KC.

. The highest total amounts of
deuterated oxysterols were
found in the liver, followed by
lungs, spleen, heart, and kidney.

. 5,6-EC liposome promoted tumor
growth and had no impact on
immunogenic cell death.

. 24-HC liposome induced
immunogenic cell death.

To our knowledge, this is the first
study to show that LNP-associated

cholesterol is metabolized in vivo
into oxysterols that impact tumor
growth.
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