ENHANCED TRANSDERMAL PERMEATION OF DICLOFENAC SODIUM USING MANGO SEED KERNEL STARCH NANOPARTICLES

Authors: Sesha R Talluri^{1,2}, Dr. Bozena Michniak-Kohn^{1,2}

- 1. Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
- 2. Dept. of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA.

Purpose

- The purpose of this study was to prepare and characterize diclofenac-loaded nanoparticles obtained from starch isolated from mango seed kernels (MSKS) and evaluate the transdermal permeation.
- MSKS extraction was performed using an alkaline method followed by freeze-drying, and its physicochemical properties were compared with commercial corn starch. MSKS nanoparticles (MSKSNPs) were synthesized using mild alkali hydrolysis and ultrasonication, then characterized for physicochemical properties, in-vitro transdermal permeation using diclofenac sodium as a model drug.

Results

Enhanced Transdermal Permeation

Sl. No	Drying method	Solid: solvent ratio	Sedimentation time (Hour)	% yield
1	Tray Dryer (40°C) for 6 hours	1:10	24	17.23±5.96
2	Tray Dryer (40°C) for 6 hours	1:10	48	20.2±3.24
3	Tray Dryer (40°C) for 6 hours	1:12	24	15.4±6.41
4	Air dry (RT 20°C) for 24 hours	1:12		18.6±2.32
5	Air dry (RT 20°C) for 24 hours	1:12	48	36.2±3.23
6	Freeze drying for 24 hours	1:10	1:10 48	
7	Freeze drying for 24 hours	1:12 48		30.4±3.15
8	Freeze drying for 24 hours	1:14	48	67.7±5.20
9	Freeze drying for 24 hours	1:15	48	60.5±3.21

Table 1:Effect of process parameters on percentage yield.

SI.	Parameter	MSKS	Corn starch	PSD	• 140 \pm 3.6 nm with a polydispersity index of 0.42 \pm 0.03
No.		(Mean±SD)	(Mean±SD)		
1	Solubility (%)	17±2.8	14±3.2	FTIR	 Confirmed the chemical integrity of Starch.
2	рН	7.0±1.2	7.0±0.6		committed the orientical integrity of otal on.
3	Moisture content (%)	7.4±0.8	11.8±1.2	TEM	 Confirmed the globular structure of MSKSNPs with
4	Water Holding Capacity (%)	79.35±0.8	72.93±0.6		particle sizes lower than 100nm.
5	Swelling Power(g/g)	3.2±0.16	2.3±0.52		 The degree of crystal size of diclofenac is reduced to
6	Gelatinization	60±2.5	66.7	XRD	14 nm when compared with the pure drug, 33 nm.
	temperature(°C)				
7.	Amylose/ Amylopectin	0.35	0.33	%EE	• 82.34±5.2.
	content				
able 2:	ble 2:Physico-chemical properties of MSKS compared with				3:Physico-chemical Characterization Of Mango Seed Kernel Starch

corn starch.

Methods and Materials

Figure 1:Schematic Illustration of Isolation of Mango Seed Kernel Starch, Preparation of Mango Seed Kernel Starch Nanoparticles, and In-vitro Permeation Testing

Results

References

- 1. Shahrim NA, Sarifuddin N, Ismail H. Extraction and characterization of starch from mango seeds. In Journal of Physics: Conference Series 2018 Aug 1 (Vol. 1082, No. 1, p. 012019). IOP Publishing.
- 2. Ahmad M, Gani A, Hassan I, Huang Q, Shabbir H. Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports. 2020 Feb 26;10(1):1-1.
- 3. El-Naggar ME, El-Rafie MH, El-Sheikh MA, El-Feky GS, Hebeish A. Synthesis, characterization, release kinetics, and toxicity profile of drug-loaded starch nanoparticles. International journal of biological macromolecules. 2015 Nov 1; 81:718-29.

Results

Figure 3: IVPT data of diclofenac Sodium loaded Mango Seed Kernel Starch Nanoparticles (MSKSNPs) as compared with control ethanolic diclofenac solution. Concentrations of the drug were 10mg/ml in both test and control samples (n=3). A) Cumulative drug release of drug-loaded nanoparticles vs ethanolic diclofenac solution for 6,12, and 24-hour time points. B) Amount of drug permeated in µg/mg of epidermis and dermis.

Figure 4: Percentage cell viability using Alamar Blue Assay of drug-loaded Mango Seed Kernel Starch Nanoparticles (MSKSNPs) and ethanolic solution of diclofenac sodium. The study was conducted in three replicates with three individual groups.

Conclusions

- Mango seed starch nanoparticles were successfully synthesized using mild alkali hydrolysis and ultrasonication.
- The method was relatively simple and took less time than acid hydrolysis. The MSKSNPs were found to be more amorphous compared to the native starch.
- These nanoparticles showed enhanced transdermal permeation compared with the ethanolic drug solution.

Future Directions

- The study will be expanded to include other BCS Class II drugs.
- Antioxidant and antimicrobial studies will be conducted on the nanoparticle formulations.

Acknowledgements

 Funding for this research has been provided by the Center for Dermal Research, Rutgers University, 145 Bevier Rd, Piscataway, NJ 08854.