Targeting DNA-Lipid Nanoparticles to Pulmonary Endothelial Cells Enhances *In Vivo* Transgene Expression

Taylor Brysgel^{1*}, Nicolas Marzolini^{2*}, Eno-Obong Essien¹, Jichuan Wu³, Manthan Patel¹, Jacob Myerson¹, Sachchidanand Tiwari³, Vladimir Shuvaev¹, Elizabeth Hood¹, Oscar Marcos Contreras¹, Vladimir Muzykantov¹**, Sahily Reyes-Esteves¹**, Jacob Brenner^{1,3}**

¹Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

³Division of Pulmonary Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

*Denotes Equal Contribution, ** Co-Corresponding Authors

Abstract

- DNA-lipid nanoparticles (DNA-LNPs) loaded with inhibitors of the cGAS-STING pathway enable safe and effective delivery of DNA in vivo. However, unmodified LNPs primarily accumulate in the liver.
- One approach to redirect the delivery of LNPs is to attach affinity ligands, such as antibodies, to their surface. Here, we show that conjugating monoclonal antibodies (mAbs) and fragment antigen-binding regions (Fabs) against PECAM (Platelet Endothelial Cell Adhesion Molecule 1) to LNPs creates a drug delivery system that:
 - 1) Redirects DNA-LNP delivery to the lungs, and more specifically, pulmonary endothelial cells.
 - Induces transgene expression in the lungs/pulmonary endothelial cells with increasing specificity over time.
 - Improves the magnitude, longevity, and organ-type specificity of the transgene expression by swapping out mAbs with Fabs as the targeting moiety.

Methods

Figure 1. αPECAM DNA-LNPs specifically target the lungs Illustrations of the structure and conjugation of aPECAM monoclonal antibodies (mAbs) vs fragment antigen-binding regions (Fabs) to DNA-LNPs. Biodistribution of ¹²⁵I-labeled Fab and mAb αPECAM DNA-LNPs reveal similar lung accumulation by both particles, and decreased uptake of Fab DNA-LNPs in the spleen.

Results

Figure 2. *In vivo* expression of PECAM-targeted **DNA-LNPs** in the thoracic cavity

Representative bioluminescence (IVIS) image of mice 1d after treatment with 5µg of luciferase pDNA loaded into αPECAM mAb DNA-LNPs alongside a naive, luciferin-treated control

Figure 5. αPECAM Fab DNA-LNPs have superior lung specificity

Lung-to-liver expression ratios quantified at 1d and 14d via ex vivo luminescence shows increasing lung specificity by αPECAM Fab DNA-LNPs over time, and overall higher ratios compared to αPECAM mAb DNA-LNPs.

Figure 4. Conjugating Fabs to DNA-LNPs immensely increases both lung specificity and expression Comparison of luminescence shows superiority of αPECAM Fab DNA-LNPs compared to mAb DNA-LNPs in vivo and ex vivo.

Figure 6. αPECAM Fab DNA-LNPs are predominantly internalized by pulmonary endothelial cells Flow cytometry analysis tracking the proportion of cells positive for fluorescent αPECAM-Fab DNA-LNPs, staining for CD45, CD64, Ly6G, CD31, and EpCAM.

Figure 7. αPECAM Fab DNA-LNP lung expression is driven by endothelial cells

Flow cytometry analysis tracking the proportion of cells positive for expression of mCherry pDNA (encoding a red fluorescent protein), staining for CD45, CD64, Ly6G, CD31, and EpCAM.

Conclusions

- Conjugating αPECAM targeting moieties to DNA-LNPs directs ~85% of their injected dose per gram to the lungs after 30 minutes.
- αPECAM DNA-LNPs induce high transgene expression in the lungs that persists for weeks and significantly increases in lung-specificity with time. Replacing mAbs with Fabs dramatically improves this specificity.
- Single-cell analysis confirms that the vast majority of expression in the lungs was confined to target endothelial cells, which are the most quiescent compared to all other transfected cell types.
- Future Directions: We will test our αPECAM DNA-LNPs as a therapy for Pulmonary Hypertension in a relevant mouse model. Likewise, we will use alternative targeting moieties to redirect the delivery of DNA-LNPs to other organs and cell types.

Acknowledgements

Artificial Intelligence-driven RNA BioFoundry

Contact: taylor.brysgel@pennmedicine.upenn.edu