Enhancing mRNA-Lipid Nanoparticle Efficacy

Exploring the Role of Ionisable and Cationic Lipid Combinations on Delivery Efficiency and Immunogenicity

Maria Evdokimou a, Hakam Alaqabani a, b, Muattaz Hussain a, and Yvonne Perrie a*

^a Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral St, The University of Strathclyde, Glasgow, G4 ORE, UK.

Introduction

Vaccines remain a cornerstone of public health, with mRNA-based therapeutics representing a transformative approach to combating infectious diseases.

Lipid nanoparticles (LNPs) are essential to this platform,

Lipid nanoparticles (LNPs) are essential to this platform, protecting **mRNA** cargo and facilitating cellular delivery. While ionisable lipids such as **SM-102** have been optimised for efficient mRNA encapsulation and release, recent interest has shifted toward fixed-cationic lipids like **dimethyldioctadecylammonium bromide (DDAB)**. Owing to its physicochemical stability and inherent immunostimulatory properties, DDAB holds potential to enhance both the structural integrity and immunogenicity of LNP-based vaccines.

Aim:

Enhance the **potency** and **efficiency** of LNPs by incorporating the fixed cationic lipid **DDAB** with the ionisable lipid **SM-102**, in the Moderna's COVID-19 vaccine LNP composition.

Manufacturing Manufacturing 4°C Buffer Exchange Preclinical Evaluation Physicochemical Characterisation In Vitro Functional Studies In Vitro Functional Analysis Immunogenicity Assessment

Conclusion

- DDAB- LNPs might be not that good delivery vehicles, but they're decent vaccine adjuvants.
- Balanced lipid ratios are key to tailoring immune polarisation.

Results & Discussion

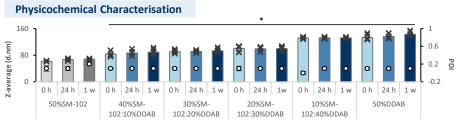


Figure 1. Physicochemical properties of DDAB-modified LNPs. LNPs were prepared via microfluidic mixing (FRR 3:1, TFR 15 mL/min, N/P 6). The aqueous phase contained Green Lantern mRNA in 50 mM citrate buffer (pH 4.0). LNPs were purified SD (n=9). Statistical significance vs. 50% SM-102 LNPs was determined by one-way ANOVA with Tukey's post-hoc test (*p < 0.05).

DSPC:Chol:	Zeta Potential (mV)	EE%	mRNA Recovery (%)
50%SM-102 :1.5%DMG-PEG2000	0.0 ± 0.1	97 ± 0.2	86 ± 2
40%SM-102:10%DDAB:1.5%DMG-PEG2000	0.0 ± 0.1	98 ± 0.2	88 ± 4
30%SM-102:20%DDAB :1.5%DMG-PEG2000	-0.1 ± 0.1	100 ± 0.1	85 ± 4
20%SM-102:30%DDAB:1.5%DMG-PEG2000	0.0 ± 0.1	100 ± 0.0	78 ± 4
10%SM-102:40%DDAB:1.5%DMG-PEG2000	-0.1 ± 0.1	100 ± 0.0	81 ± 3
50%DDAB :1.5%DMG-PEG2000	0.0 ± 0.1	100 ± 0.1	89 ± 2

Table 1. Physicochemical properties of DDAB-modified LNPs. Data represent mean ± SD from three batches across three repeats (n=9). EE% = encapsulation efficiency.

Increasing DDAB content correlated with a progressive rise in average particle size, indicating a dose-dependent effect on LNP morphology.

In Vitro Application

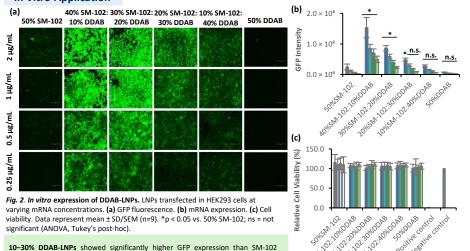


Fig. 3. In vivo evaluation DDAB-LNPs. Mice received intramuscular (LM) injections of Fluc mRNA-LNPs (1 μg/50 μL), followed by subcutaneous D-luciferin and IVIS imaging at 6 and 24 hours. Representative bioluminescence images showing Fluc expression. (b) Quantified luciferase activity normalised over time Data are mean + SD (n=3). *p < 0.05 vs. 50% SM-102 LNP; n.s. = not significant (ANOVA. Tukey's).

SM-102 LNPs showed the highest expression, with **signal decreasing as DDAB content increased**. This suggests DDAB's in vitro enhancement may not fully translate in vivo, possibly due to **biodistribution** or **immune interactions** of a living organism.

Immunogenicity

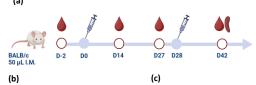
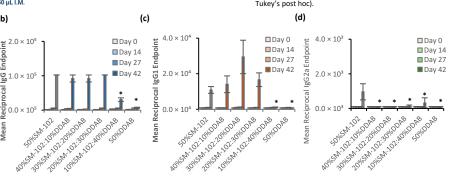



Fig. 4. Antibody levels in immunised mice. (a) Schematic of the immunisation timeline. Female BALB/C mice received 5 μg OVA mRNA-LNPs on days 0 and 28; blood was collected on days 0, 14, 27, and 42. Antibody levels were measured by ELISA. (a) Total IgG, (b) IgG1, and (c) IgG2a titres. Data shown as mean ± SEM (n = 5); *p < 0.05 vs. 50% SM-102 LNP (one-way ANOVA, Tukey's post hoc).

All but the DDAB-rich LNPs induced strong total IgG. IgG1 was elevated in 10–30% DDAB-LNPs, slightly exceeding SM-102 controls, while IgG2a remained low, indicating limited Th1-type responses.

LNPs, with 10% DDAB yielding a 6-fold increase at 2 µg/mL, suggesting improved

transfection. Cell viability remained comparable, indicating low cytotoxicity.

^b Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.