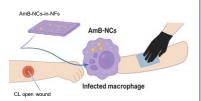


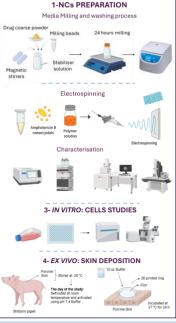
Amphotericin B Nanocrystals-in-Nanofibres films for the Topical Treatment of Cutaneous Leishmaniasis

Martina Sangalli¹, Marta Garcia Fuster¹, Lucia Lopez-Vidal, Ryan F.Donnelly Alejandro J. Paredes^{1*}.

¹ School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, BT9 7BL, Northern Ireland, UK.
* a.paredes@qub.ac.uk


INTRODUCTION

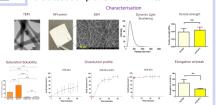
Cutaneous leishmaniasis (CL) is a neglected parasitic skin disease transmitted by sandfily bites, affecting up to 1 million people annually and leaving disfiguring scars, especially in low-income regions [1]. Current treatments are toxic, expensive, and poorly accessible [2]. Although Amphotericin B (AmB) is effective, its use is limited by poor solubility and systemic toxicity. Nanocrystals (NCs) improve solubility [3] and may enhance macrophage uptake [4], while nanofibres (NFs) adhere to skin and enable controlled drug release. Embedding AmB-NCs into NFs offers a promising, localised strategy for this overlooked disease.


AIM OF WORK

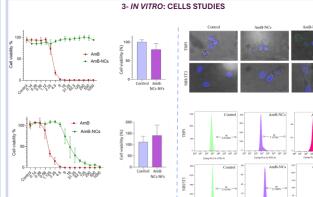
To develop a dissolvable **NFs** patch loaded with **AmB NCs** for <u>topical, self-administered</u> treatment for CL.

AmB-NCs will act as 'Trojan horses', being phagocytosed by infected macrophages and releasing the drug intracellularly to combat the parasite while limiting systemic toxicity.

METHODS


Pre- formulative studies

1-NCS PREPARATION Modia Miling The state of the state o


AmB NCs (~120 nm) successfully produced via wet media milling and purified from the SDS excess

2-NFs PREPARATION

AmB-NCs were effectively embedded into uniform NFs with suitable mechanical properties, maintaining particle size below 200 nm. TEM confirmed the NCs-in-NFs architecture. The NCs formulation markedly improved saturation solubility compared to the coarse AmB powder while AmB-NCs-in-NFs delayed the dissolution profile of the AmB-NCs.

RESULTS

2.96 μg/mL in THP-1; 0.9 μg/mL in NIH/3T3); AmB-NCs preserved cell viability in both lines; NF formulations, with or without AmB-NCs (~30 μg/well), showed no significant cytotoxicity, confirming system biocompatibility.

4- EX VIVO: SKIN DEPOSITION Only t

Free AmB was cytotoxic in both cell lines (ICso:

Only the AmB-NCs-in-NFs system enabled ~11% transdermal delivery in 24 h, combining NC-enhanced solubility with NFs-mediated skin retention.

CONCLUSIONS

AmB-NCs-in-NFs patches were developed, combining NCs that enhanced solubility, dissolution rate, and uptake by human monocytes, with electrospun PVA NFs that ensured skin adhesion and delayed NCs dissolution. This biocompatible, self-applicable patch achieved ~11% transdermal delivery across intact skin in 24 hours and offers a practical, safer alternative to systemic therapy, holding strong promise for accessible, community-level treatment of CL in resource-limited settings.