Controlled Release Society

**CRS** 

# Microneedles for rapid and sustained delivery of acetaminophen and caffeine for migraine therapy

Harsha Jain, PhD1, Nicole K. Brogden, PharmD, PhD1,2

**Affiliation:** <sup>1</sup> Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, USA <sup>2</sup> Department of Dermatology, Carver College of Medicine, University of Iowa



#### Introduction

- Conventional migraine treatments are often delayed and inefficient.
- Oral medications can be ineffective due to nausea and vomiting, and injectables are not preferred by many patients. Microneedle (MN) delivery of caffeine (CAF) and acetaminophen (ACM) offers a patient-friendly solution for rapid and sustained relief.

# Method

# dMN preparation and characterization





Fig 1: A) Preparation of dMNs, B) ARES G2 rheometer used for axial compression testing

# In vitro drug release study

- Diffusion cells: Static Franz diffusion cells (Permegear, USA), 20 mL receptor volume with 4.91 cm<sup>2</sup> diffusion area
- Membrane: SnakeSkin™ dialysis tubing, 10,000 MWC0
- Receiver medium: HEPES buffer, pH 7.4, warmed to 37  $^{\circ}\text{C}$
- Study duration: 8 hours



Fig 2: A) 45% PVP gel loaded with 1% each ACM and CAF, B) Static

# dMNs permeation studies

 Performed using Franz diffusion cells for both the drugs individually and in combination

# In vitro drug permeation study

- Diffusion cells: Flow-through diffusion cells (Permegear, USA) with 1.76 cm<sup>2</sup> diffusion area.
- Membrane: Excised dermatomed porcine skin (~0.8 µm thickness) pretreated with solid MNs (500 µm length)
- Receiver medium: HEPES buffer, pH 7.4, 37 °C with a 25 µL/mL flow rate for 24 hours



Figure 3: A) Crosssection of a flowthrough diffusion cell, B) Solid stainless steel MNs C) MN pretreatment process

# Result | 19,22 % | 13,47 % | 19,22 % | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00 | 14,00

Fig 4: A) dMNs patch containing ACM and CAF B) The dMNs displayed minimal % height reduction after the compression test. Data above bars represent % height reduction (n=6, mean ± SD)

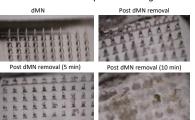



Fig. 6: Microscopic images showing the dissolution behavior of dMNs before and after application

## Objective

- This study aims to develop a dissolving MN (dMN) patch for rapid and sustained delivery of ACM and CAF.
- in these studies, solid MNs will be used as proof of concept to quantify the effect of MN treatment on skin permeation of ACM and CAF from topical gel.

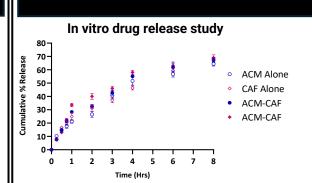



Fig 7: Drug release profiles from 45% w/w PVP gel containing both ACM and CAF (1% w/w) (n=3. mean ± SD)

# In vitro drug permeation study

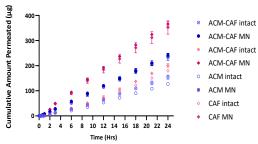



Fig 8: Drug permeation profiles from 45% w/w PVP gel containing both ACM and CAF (1% w/w) applied to MN-treated and intact skin (n=3, mean ± SD). All blue points represent ACM, and all red points represent CAF.

Table 1: Permeation studies data from PVP 45 % gel applied to skin treated with solid MNs

|             | Steady-state flux (Jss, µg/cm²/h) of ACM and CAF when |                 |                 |           |  |
|-------------|-------------------------------------------------------|-----------------|-----------------|-----------|--|
|             | delivered alone or in combination                     |                 |                 |           |  |
| Formulation | ACM                                                   | ACM Alone       | CAF             | CAF alone |  |
|             | combined                                              |                 | combined        |           |  |
| Intact Skin | 4.27 ± 0.2                                            | $3.48 \pm 0.22$ | $6.05 \pm 0.29$ | 5.36±0.13 |  |
|             |                                                       |                 |                 |           |  |
| MN Treated  | 5.77 ± 0.24                                           | 5.55 ± 0.55     | $8.07 \pm 0.80$ | 7.87±0.62 |  |
|             |                                                       |                 |                 |           |  |

# 

Fig 10: In vitro permeation of CAF from dMNs containing CAF alone or ACM + CAF, from 1 dMN (open symbol) vs 2 dMNs (closed symbol) (n=3, mean± SD)

Table 2: Total amount of drug permeated through dMNs (in μg), (n=3, mean± SD)

| · · · · · · · · · · · · · · · · |                 | · ( F3)) ( •)• |
|---------------------------------|-----------------|----------------|
| Formulation                     | ACM             | CAF            |
| 1dMN-Alone                      | 2.39 ± 1.19     | 5.21 ± 0.23    |
| 2dMN- Alone                     | $3.70 \pm 0.14$ | 9.39 ± 0.28    |
| 1dMN- Combined                  | 2.55 ± 0.14     | 5.39 ± 0.59    |
| 2dMN- Combined                  | 3.93 ± 0.76     | 9.83 ± 0.14    |

 dMNs enabled faster onset of delivery, with measurable drug concentrations as early as 5 min (vs gels applied to intact skin, which allowed both drugs to be detected at 1 hour).

### **Conclusions**

- Flux increased for ACM (1.33X) and CAF (1.35X) through skin pretreated with solid MN compared to untreated skin in combined formulation.
- dMNs enabled drug detection within just 5 minutes, highlighting their promise for rapid and effective migraine management.
- Within 120 minutes, 2dMNs demonstrated approximately 1.5x and 1.8x higher total permeation of ACM and CAF, compared to 1 dMNs in combined formulation

### Acknowledgements

Funding Source: This work was funded by NIH R35GM149337.

Brogden lab members: Valeria Cota, Joseph Correa, Brianna Haase, Krishna Kumar Patel

### References

- Bentivegna E, Onan D, Martelletti P. Unmet Needs in Preventive Treatment of, Migraine. Neurol 2023;12(2):337–42.
- Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B, 2019;9(3):469–83