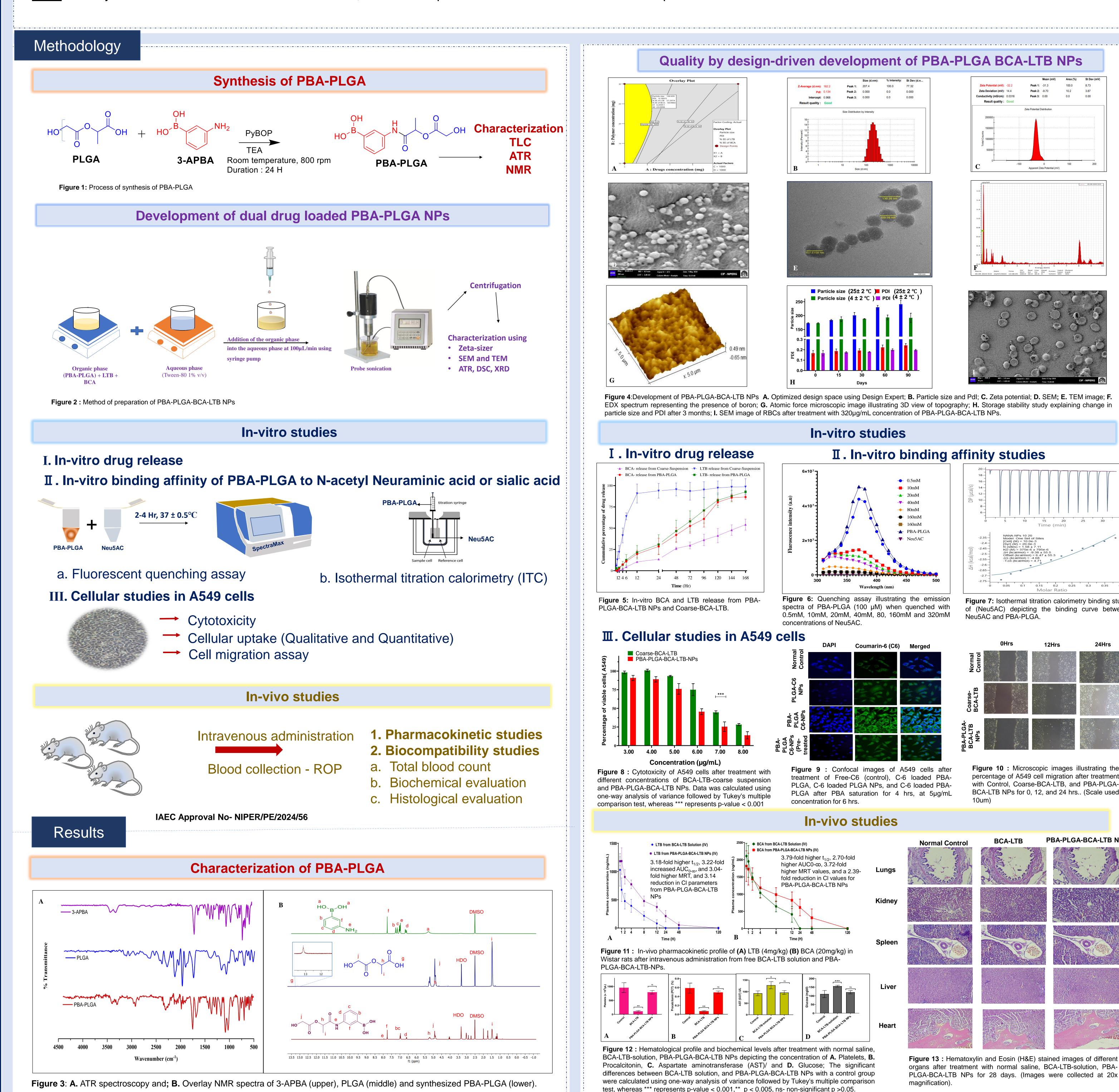


Phenylboronic acid functionalized poly (lactic-co-glycolic acid) nanoparticles towards lung cancer

Ankaj Kumar^a, Anurag Saini^b, Anshu Gupta^c, Kalyan K.S^b, Sudhagar S^c and Arvind Gulbake^{a*}

- b Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, India ^c Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati,India Corresponding author


BACKGROUND

Introduction: Lung cancer is the leading cause of death among all types of cancer, with a death severity of 350 deaths per day in the United States [1]. The multiple anti-cancer activities of Biochanin A (BCA) and Lenvatinib (LTB) make an ideal chemo-herbal combination that can synergize with each other [2]. The toxicity towards normal cells is the biggest obstacle during cancer therapies. Targeted drug delivery (TDD) identifies such challenges by employing a suitable ligand to achieve site-specificity, safety, and deliverability [3].

<u>Challenges</u>: Development of drug resistance, systemic toxicities, and treatment variability among patients limit the translational outcomes of chemotherapeutics [4].

Research Approach: Lung cancer patients frequently overexpress the sialic acid epitopes, which provide binding affinity and precise therapy for phenyl boronic acid (PBA) functionalized nanocarriers.

Aim: a. To synthesize and characterize the PBA-PLGA; b. To develop and evaluate the in-vitro and in-vivo performance of PBA-PLGA-BCA-LTB NPs

Conclusion

PBA-PLGA is a biocompatible, non-toxic biomaterial that can be used to achieve sialic acid-mediated cancer targetability. It is suitable for co-loading two different drugs and achieving sustained drug characteristics to produce a longer therapeutic effect. Future studies are required to evaluate the anti-cancer potential of PBA-PLGA-BCA-LTB NPs using suitable in-vivo lung cancer models.

References

Anusandhan National Research Foundation

[1] Siegel et al, Cancer J Clin, 2022:7-33, [2] Youssef et al, Sci. Rep, 2016:30717. [3] Lee et al, Adv. Funct. Mater, 2015: 3705-3717, [4] Elgohary et al, JCR, 2018: 230-243. [5] Kumar et al, Nanoscale, 2025,17, 15960-15987

ROYAL SOCIETY

OF CHEMISTRY

Figure 7: Isothermal titration calorimetry binding study

of (Neu5AC) depicting the binding curve between

Figure 10: Microscopic images illustrating the

percentage of A549 cell migration after treatment

with Control, Coarse-BCA-LTB, and PBA-PLGA-

BCA-LTB NPs for 0, 12, and 24 hrs.. (Scale used

BCA-LTB

PBA-PLGA-BCA-LTB NPs

Neu5AC and PBA-PLGA