Scaling Rules for Designing Intra-vaginal Rings and PK Studies in Animals vs. Humans

Bhavana C. Morankar¹, David F. Katz², William Herbst², Daniel Adrianzen Alvarez² 1 NC State Biomathematics Program, 2 Duke University Dept. Of Biomedical Engineering

Experimental design (e.g. drug loads) of PK studies across different species (sheep, macaque, human) for IVR-drug combos must be rationally scaled for meaningful interpretation and application of resulting PK data.

Our PK scaling analysis is based on a 1D, multicompartment, diffusional mass transport model which predicts topical delivery via IVR for the anti-HIV drug Islatravir

Representative Human Model:

Computational ODE/PDEs Model:

IVR	$\frac{\partial C}{\partial t} = D_r \cdot \frac{\partial^2 C}{\partial x^2} + \frac{D_r}{x} \cdot \frac{\partial C}{\partial x}$
Vaginal Fluid	$\frac{\partial C}{\partial t} = D_f \cdot \frac{\partial^2 C}{\partial x^2} - k_f \cdot C$
Epithelium	$\frac{\partial C}{\partial t} = D_e \cdot \frac{\partial^2 C}{\partial x^2}$
Stroma	$\frac{\partial C}{\partial t} = D_s \cdot \frac{\partial^2 C}{\partial x^2} - k_s \cdot C$
Bloodstream	$\frac{dB}{dt} = \frac{k_s \cdot V_s}{V_b} \cdot T - k_b \cdot B, T =$
	$\frac{1}{x_4 - x_3} \int_{x_3}^{x_4} C dx$

Model Outputs (Spatial/ Temporal Drug Distributions):

Scaling Across Species:

Scaling is necessary to account for biophysiological variation across (and within) species.

Scaling even just ring thickness across species has a significant effect on model output

70-100 μm

AFTER 28 DAYS, HUMAN: 20% Drug Released MACAQUE: 39% Drug Released

Rules for Scaling:

 $53 - 97 \text{ cm}^2$

Sheep

- To ensure comparable PK across species, we implement two new scaling rules and compare performance with traditional allometric scaling.
- The two rules deduce drug loads for sheep and macaque IVRs vs human IVRs by computing ratios of (animal to human) IVR drug loads.

Rule 1: Time and volume-averaged drug concentration in stroma over 28 days (C*₂₈) is conserved across two species.

Rule 2: RMS (root-mean-square difference) of instantaneous volume-averaged drug concentrations in stroma (C*) between two species is minimized over 28 days.

cm³

cm³

1.17-1.43 mm 2.73 – 5.07 L 2.9 – 6.5

Conventional Allometric Rule: Ratio of initial drug mass in IVR to stromal tissue volume is conserved across two species.

Monte Carlo Simulations: (Macaque-Human)

Scaling Results:

Rules 1 and 2 have similar results for optimal ratio of macaque to human IVR drug loads for varied parameter combos:

0 avg, + large, - small size Ratio = C_{oM}/C_{oH}						
Parameter Combination	Rule 1	Rule 2	Allometric			
0 0	0.66	0.64	1.04			
0 +	1.18	1.17	1.87			
0 -	0.41	0.39	0.63			
+ 0	0.38	0.37	0.65			
+ +	0.68	0.67	1.17			
+ -	0.24	0.23	0.39			
- 0	1.26	1.25	1.96			
- +	2.25	2.26	3.52			
	0.78	0.76	1.17			

Rule 1 vs Allometric Scaling:

Species	Relative (t _{max}	
	Rule 1	Allometric	(hrs) (1=a)
Human	1	1	7.26
Sheep	1.52	1.43	6.91
Macaque	0.50	0.78	9.60
	$C_{max}/C_o \times 10^{-3}$		
Human	5.95	5.95	
Sheep	5.95	6.24	
Macaque	9.60	6.08	

Key Takeaways:

- Our two new Scaling Rules gave similar results.
- Model-determined drug loading was higher in sheep and lower in macaques vs. humans.
- Rules vs. Allometric differences were greater for macaques than sheep.
- PK cannot be entirely equated across species, and model predictions guide experimental protocols/interpretations of PK results.
- Results show the importance of mass transport theory for harmonizing PK measures of IVR performance via scaling across species.

Next Steps:

- Expanded sensitivity analysis/uncertainty quantification
- Expanded comparison of model and experimental results
- Incorporate drug solubility variation across compartments

ACKNOWLEDGEMENT: This research was supported by the NIH RO1 AI150358 and 5P30 AI064518 (Duke Center for AIDS Research) grants.