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ABSTRACT

KRAS-mutated non-small cell lung 
cancers (NSCLC) are marked by 
aggressive progression, therapeutic 
resistance, and pronounced 
heterogeneity. While multi-drug 
combinations can harness synergistic 
and even meta-synergistic effects, their 
clinical translation is often limited by 
formulation challenges such as 
instability, incompatibility, and toxicity. 
Nanoparticle (NP) delivery offers a 
promising strategy to overcome these 
barriers by co-encapsulating multiple 
agents within a single, stable 
formulation. R595, an Iodolium-based 
ultra-stabilizer, has been shown to 
enhance the stability and shelf life of 
diverse small-molecule drugs beyond 
conventional solubilizers. This study 
compares two optimization strategies 
for high-complexity drug-loaded NPs: 
traditional human-driven decision-
making guided by clinical and 
experimental insight, and an AI-driven 
framework for rational design and 
refinement of drug combinations and 
administration protocols.

METHODS

Nanoparticle Preparation: NPs were 
prepared via nanoprecipitation using R595 
and drug solutions in a non-aqueous 
solvent, followed by rapid mixing in an 
aqueous phase. Size, polydispersity index 
(PDI), and zeta potential were measured 
via Dynamic Light Scattering.

Prediction model of drug classification: A 
decision tree classifier was trained on 
molecular descriptors with regularization 
and cross-validation to predict 
nanoparticle self-assembly types, 
evaluated by F1-score.

Cellular Models: KRAS P53 mutated Lung 
(KPL) cancer cells were used. Cytotoxicity 
and resistance assays were performed in 
vitro.

Animal Studies: Mouse models of KRAS-
mutated NSCLC cancer were treated with 
R595-based NPs. Tumor growth, survival, 
and biodistribution were assessed, 
alongside body weight and blood analyses 
for biocompatibility.

AI-Based Design of Combinatorial 
Therapies: Various AI tools, including 
SPIKE analysis, ChatGPT and treatment 
plan builder were used to improve 
suggested drug combinations for KPL 
treatment.

CONCLUSION

•R595 NPs were categorized into five 
self-assembly types using DLS and 
machine learning, enabling prediction of 
nanoparticle stability based on drug 
descriptors.

•Trametinib resistance was validated in 
vitro and in vivo; however, resistant cells 
showed increased sensitivity to 
Ponatinib and Paclitaxel, revealing 
opportunities for sequential therapy.

•Single-drug R595 NPs administered via 
IP or SQ routes showed no local or 
systemic toxicity, demonstrating 
favorable safety and biocompatibility.

•Drug sequence had a strong impact on 
treatment outcomes, emphasizing the 
value of optimized scheduling. 

•High-complexity drug combinations 
selected through data-driven analysis 
and formulated in R595 NPs achieved 
successful biodistribution and 
preserved hematological profiles.

•Administration of multi-drug R595 NPs 
significantly improved survival and 
suppressed tumor growth in KPL 
xenograft models without inducing 
weight loss. 

•AI-human collaborative design of 
nanoparticle regimens (Plan Builder + 
ChatGPT) yielded the most effective 
treatment strategy, outperforming fully 
human-designed plans in vivo.
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RESULTS

Figure 1-Classification of Small-Molecule Drugs by R595 Nanoparticle Self-
Assembly Behavior. a.Dynamic Light Scattering (DLS) analysis of mean 
particle size for single-drug nanoparticles formed via nanoprecipitation, used 
to characterize the self-assembly behavior of various drug molecules. b.DLS-
measured polydispersity index (PDI) values for the same single-drug 
nanoparticle formulations. c.Categorization of the tested small-molecule 
drugs into five distinct nanoparticle self-assembly types based on their 
formulation characteristics. d.Decision tree model derived from machine 
learning to predict nanoparticle self-assembly outcomes based on molecular 
descriptors. Abbreviations: nF–number of fluorine atoms; nO–number of 
carbonyl groups; PWS–predicted water solubility; MW–molecular weight; nPt–
number of platinum atoms; HBA–hydrogen bond acceptor count; nSA–
number of sulfonamide groups. e.Model performance metrics including 
accuracy, F1 score, and weighted F1 score for the decision tree 
classifier .f.DLS measurements of average particle size for single-drug 
nanoparticles containing Trametinib (type 1), Ponatinib (type 2), Abemaciclib 
(type 3), and their combinations. g.PDI values of the same formulations, 
showing improved nanoparticle homogeneity upon co-formulation with 
Trametinib. Both size and PDI data indicate enhanced stabilization of 
Ponatinib and Abemaciclib in the presence of Trametinib. h.High-performance 
liquid chromatography (HPLC) analysis confirming the successful co-
encapsulation of both Ponatinib and Abemaciclib in a stable nanoparticle 
formulation.

Figure 2-The Effect of Trametinib Resistance In Vitro and In Vivo. a. In vitro 
dose–response curves comparing the sensitivity of KPL cells and Trametinib-
resistant KPL cells to Trametinib, Ponatinib, and Paclitaxel. Each drug was 
tested on both cell types. While Trametinib-resistant cells showed decreased 
sensitivity to Trametinib (as expected), an increased response (sensitization) 
was observed to both Ponatinib and Paclitaxel. b.Body weight change from t0 
of subcutaneous xenografts model of KPL cells tumor-bearing mice (N=5) 
treated with different R595 NPs of either Trametinib, Trametinib-Paclitaxel or 
Trametinib-Ponatinib. c.Kaplan–Meier survival analysis of mice bearing KPL, 
p=0.0066 according to Mantel-Cox test analysis. d.In vivo efficacy measured 
by % of tumor volume from t0, the first day of treatment.

Figure 3-In Vivo Safety Comparison of Single-Drug R595 NPs via IP vs. SQ 
Administration. a.Upper panel: Percent change in body weight from baseline 
in mice treated with free drugs (FD) via IP or SQ injection (N=3 per group). 
Lower panel: Representative images of local toxicity at the SQ injection site. 
b.Percent change in body weight from baseline in mice treated with single-
drug R595 nanoparticle formulations over time (N=3 per group).No signs of 
local toxicity were observed in any of the nanoparticle-treated groups. 

Figure 4- High Complexity Drug Sequence and Combination Selection and In-
Vivo Safety and Biodistribution of High-Complexity R595 Nanoparticles.  
a.Sequenced free drugs on KPL cells, the cells were incubated with the drugs 
for 24hr. b.Sequenced NPs combinations on KPL cells, the cells were 
incubated with the drugs for 24hr. c.  Data-driven selection of high-complexity 
drug combinations based on spike analysis outputs. d.Biodistribution of high-
complexity R595-stabilized nanoparticles containing Trametinib-Paclitaxel, 
Trametinib-Ponatinib, Trametinib-Irinotecan-Pemetrexed, and Trametinib alone, 
24 hours after intraperitoneal (IP) injection into mice bearing subcutaneous 
KPL xenografts. Biodistribution was assessed using IVIS imaging 
(λex=745nm,λem=840). e.Hematological analysis of mice treated with single-
drug R595 NPs via either IP or subcutaneous (SQ) injection, showing 
hemoglobin (HGB), red blood cell count(RBC), platelet count (PLT), and white 
blood cell count (WBC#)

Figure 6. In Vivo Efficacy and Safety of High-Complexity Combination 
Nanoparticle Therapy. a.Treatment scheme outlining the administration 
sequence of high-complexity R595-stabilized nanoparticle (NP) combinations.
b. Kaplan–Meier survival curve of mice bearing subcutaneous KPL xenografts, 
showing a significant survival benefit in treated groups (p = 0.0008, Mantel–
Cox test). c. Percent change in body weight from baseline (t₀) in tumor-bearing 
mice treated with various R595 NP regimens: Trametinib alone, Trametinib-
Paclitaxel followed by Trametinib alone and Trametinib-Ponatinib, or 
Trametinib-Paclitaxel followed by Trametinib-Irinotecan &Pemetrexed and 
Trametinib-Ponatinib. d.In vivo therapeutic efficacy measured as percent 
change in tumor volume from baseline (t₀), representing the first day of 
treatment.

Figure 7. Comparison of High-Complexity Nanoparticle Treatment Regimens 
in KRAS-Mutated NSCLC Xenografts. a.Schematic overview of three multi-
step, high-complexity nanoparticle (NP) treatment regimens administered over 
a 3-day cycle (Days 1, 3, 5). Each symbol represents a distinct treatment 
design: Group 1 was generated using Plan Builder + ChatGPT suggestions, 
Group 2 was designed through ChatGPT–human collaboration, and Group 3 
was based on expert human input alone. b.Drug scheduling matrix detailing 
the composition and timing of each NP formulation, including Oxaliplatin 
(Oxal), Everolimus (Eve), Abemaciclib (Abem), Irinotecan (Iri), Paclitaxel (Pac), 
Ponatinib (Pon), Trametinib (Tra), and Pemetrexed (Pem). c.Kaplan–Meier 
survival curves of mice bearing subcutaneous KPL xenografts treated with the 
indicated regimens. d.Body weight changes over time in treated mice, showing 
no significant systemic toxicity. e.Tumor volume progression from baseline, 
demonstrating differential therapeutic responses to the three high-complexity 
NP regimens.


