

Liver-targeting oral lipid nanoparticle for CRISPR/Cas9 therapy in metabolic dysfunction-associated steatotic liver disease

Seungcheol Kim¹, Heewon Park¹, Jeong Man An³, Seungcheol Lee², Yong-kyu Lee^{3,4}, Hyun Jung Chung²*, Yeu-Chun Kim¹*

¹ Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea / ² Department of Biological Sciences, KAIST, Daejeon, Korea / ³ 4D Convergence Technology Institute (National Key Technology Institute in University), Korea National University of Transportation, Jeungpyeong, Korea / ⁴ Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Korea

CONCLUSION

Liver-targeting oral enhancing polymer(GCGA) was synthesized and optimized for oral LNP

GCGA coated LNP enhances stability under pH and enzymatic conditions in the GI tract

GCGA-LNP uptake via bile acid receptors has been confirmed in vitro and in vivo

Orally administered GCGA-LNP accumulated in the liver with high gene expression

DGAT2-CRISPR/Cas9 LNP alleviates hepatic steatosis in MASLD models

LNPs delivering CRISPR components for DGAT2 inhibition effectively attenuated hepatic steatosis in MASLD models. This study addresses the potential of the bile acid-polymer-coated LNP as a scalable, patient-friendly oral gene delivery platform for treatment of MASLD and other liver diseases.

gene expression compared to unmodified LNPs after oral administration. The oral

DAG

TAG

-DGAT2-

GCGA-LNP exhibits great potential for MASLD treatment and oral gene therapy

in HEPG2 and Caco-2 cell lines (n=4, scale bar=10µm). (C)

Competitive cellular uptake of GCGA-LNP with co-treatment of free

6. Therapeutic efficacy of DGAT2-CRISPR/Cas9 LNP in hepatic steatosis models (*in vitro, in vivo*)

polymer.

Figure 2. (A) Hydrodynamic size, PDI, and surface zeta potential of GCGA oral LNP for lipid/polymer ratio optimization (n=3). (B) Hydrodynamic size, PDI, and surface zeta potential of LNPs (n=3). (C) Surface morphology analysis by Cryo-TEM (scale bar=100nm). (D) CLSM analysis visualizing co-localization between the polymer and the LNP (scale bar=5µm). (E) pDNA encapsulation efficiency of LNPs by Quant-iT Ribogreen assay (n=3). (F) Illustration describing pH conditions in GI tract. (G) Stability assessment of LNPs against pH and enzymatic degradation under GI conditions.

The optimal GCGA-to-LNP ratio was selected, and its characterization, morphology, and stability were analyzed.

Figure 4. (A) In vivo biodistribution of LNPs after oral injection: ex vivo fluorescence imaging and quantitative analysis of fluorescence intensity in major organs (L: Lung, H: Heart, K: Kidney, S: Spleen, Li: Liver, St: Stomach, I: Small Intestine) (n=3). (B) In vivo luciferase activities of LNPs after oral injection: ex vivo luminescence imaging and quantitative analysis of luciferase activity in major organs (n=5). (C) Cross-sectional CLSM images of the ileum 4 hr after oral administration of GCGA-LNP (FITC: ASBT, Cy5.5: LNP) (scale bar=100µm). (D) Time-dependent in vivo biodistribution of GCGA LNPs: *ex vivo* fluorescence imaging and quantitative analysis (n=5).

μ

Orally administered GCGA-LNPs exhibited ASBT-mediated uptake, liver targeting, and high hepatic gene expression.

Figure 6. (A) Schematic illustration of establishing in vitro hepatic steatosis model and its lipid alleviation by DGAT2-CRISPR/Cas9 therapy. (B) NGS analysis of DGAT2-CRISPR/Cas9 LNP in vitro hepatic steatosis model. (C) Triglyceride analysis of in vitro hepatic steatosis model (n=3). (D,E) CLSM analysis of *in vitro* hepatic steatosis model for (D) fatty acid and (E) ROS (scale bar=10µm). (F) Oil Red O staining of *in vitro* hepatic steatosis model (scale bar=100µm). (G,H) Analysis on mitochondrial activity of *in vitro* hepatic steatosis model (n=4). (I) Illustration describing in vivo MASLD model (HFD) induction and MASLD therapy by oral administration of GCGA DGAT2-CRISPR/Cas9 LNP. (J) H&E staining of the HFD-induced mouse liver to analyze fatty liver phenotypic patterns (scale bar=100µm).

HFD GCGA LNP

(DGAT2 Cas9)

GCGA coated DGAT2-CRISPR/Cas9 LNP effectively alleviates hepatic lipid accumulation in MASLD models.