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Figure  1: A) Synthesis of dense bulk silk fibroin drug delivery reservoirs (two-layer wafer system) blank or 
embedded with enzymes.  B) Digital image of  12.5mm x 1mm, and SEM of system’s cross section

Figure  3: Cumulative release of fluorophore (A1,B1,C1) Degradation profile (A2,B2,C2) and swelling 
profile (A3,B3,C3) over time at different processing temperatures for (A) Control samples, (B) 𝛼-
Chymotrypsin-embedded designs, (C) Silk designs in 𝛼-Chymotrypsin doped in DPBS. 

Evaluate the  pharmacokinetic  profile of 1- 30w/v% silk formulation and the 
thermal effect on high crystallinity formulations.
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Internally enzyme-triggered release (Enzyme-Embedded Silk reservoirs)
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Figure  4: (A)  Area under the curve of cumulative release for all tested silk designs. (B) Enzymatic 
activity of enzyme-embedded designs vs. fresh enzyme. (C) Beta-sheet content under processing 
temperatures. (D) Doxorubicin stability after exposure to heat at IC50 dosage. 
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Figure  5:  Schematic of antenna fabrication.
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Silk reservoirs can efficiently encapsulate bioactive molecules using beta-
sheet inducing methods such as thermoplastic molding and water vapor 
annealing.1,2,3

Thermoplastic molding processing temperatures impacts 
silk fibroin material properties.

Wu, J. & Fajardo Cortes, K., et al. ACS Biomat. Science and Engineering (2024)

A two-layer wafer system made from 1w/v% silk amorphous 
nanopowders can efficiently encapsulate small molecule or 
enzyme-based active pharmaceutical ingredients. 
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Conclusion
• Higher beta-sheet content  enhance controlled, sustained, and delayed 

release profiles.
• Enzyme-embedded silk reservoirs show initial bolus release  and accelerated 

pharmacokinetic properties  in response enzymatic activation.
• Enzyme function decreases with higher processing temperatures.
• Thermoplastic molding protects small molecule and enzyme drug.
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