

Rate of Hearing Loss in Platinum-Naïve Patients Receiving Immune Checkpoint Inhibitors

Kaitlyn A. Brooks, MD¹; Christopher G. Gidley, MS¹; Olivia Grimley, AuD¹; Catherine Wang, PhD²; Shirin Jivani, AuD¹; Aung Naing, MD, FACP³; Jack Phan, MD PhD⁴; Katherine Hutcheson, PhD¹; Xin Wang, PhD, DABR²; Paul W. Gidley, MD¹; Marc-Elie Nader, MD¹

¹Dept. of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX.

²Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX.

³Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX.

⁴Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas

THE UNIVERSITY OF TEXAS
MD Anderson
~~Cancer Center~~
Making Cancer History®

Abstract

Objective: Hearing loss from immune-checkpoint inhibitors (ICIs) has been documented in case reports and case series. We present the largest retrospective study investigating the rate of ICI-related ototoxicity in a monitored cohort of platinum-naïve patients.

Study Design: Retrospective cohort study

Setting: Tertiary-care center.

Methods: Patients treated with ICI between January 1, 2017 and December 31, 2022 with baseline and post-treatment audiograms were included. Patients with a history of platinum-based chemotherapy were excluded. Demographics, oncologic diagnosis, ICI treatment details, and temporal bone irradiation (TBRT) were recorded. Audiometric thresholds were compared before and after ICI therapy. The primary outcome measure was a change in hearing as defined by the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE). Secondary outcome measures included changes in hearing using the American Speech-Language-Hearing Association (ASHA) and TUNE criteria.

Results: Among 15,390 ICI recipients, 29 platinum-naïve patients met inclusion criteria. Six of 29 patients (20.7%) experienced a CTCAE grade 1 or higher hearing loss. The proportions of hearing loss as defined by ASHA and TUNE criteria were 44.8% and 27.6%, respectively. The interval between audiograms was statistically associated with an increased proportion of hearing loss (CTCAE: $p < 0.01$; ASHA: $p = 0.05$; TUNE: $p = 0.45$). None of the other potential covariates believed to be confounders were significantly associated with the outcome.

Conclusion: A significant proportion of our monitored platinum-naïve ICI patients met hearing loss criteria. Prospective studies with standardized audiology surveillance are needed to further quantify the true incidence of ICI ototoxicity.

Introduction

- Immune checkpoint inhibitors (ICI) have expanding indications for cancer treatment^{1,2}
- Numerous immune-related adverse events (irAEs) have been reported but are incompletely characterized³
- Audiovestibular dysfunction is an underexplored irAE³⁻⁷
 - Long-term impact on cancer survivorship quality of life^{8,9}

Objectives:

- Estimate proportion of hearing loss (HL) in patients initiating ICI
- Explore demographic factors that may influence ICI-related HL

Methods & Materials

Retrospective case series (IRB# PA19-0106):

- Adult patients who received ICI with 2 audiograms timed pre- and post-ICI initiation
- Exclusion: Platinum-based chemotherapy exposure

Primary outcome:

- Incidence of HL as defined by National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) version 5.0¹⁰

Secondary outcomes:

- Incidence of HL by American Speech-Language-Hearing Association (ASHA)¹¹ and TUNE scale criteria¹²
- Association between patient factors and HL with univariable logistic regression
- Two-tailed t-test comparing time interval of auditory monitoring and from ICI-initiation to follow-up auditory monitoring in non-HL and HL patients

Statistical considerations:

- $p < 0.05$, 95% confidence intervals reported

Contact

Marc-Elie Nader, MD

The University of Texas MD Anderson Cancer Center
1515 Holcombe Blvd.

Houston, TX 77030

Ph: 713-792-6920 E-mail: mnader@mdanderson.org

References

- Haslam A, Prasad V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. *JAMA Netw Open*. May 3 2019;2(5):e192535. doi:10.1001/jamanetworkopen.2019.2535
- Hu F, Ye X, Zhai Y, et al. Head and neck toxicities induced by immune checkpoint inhibitors: a disproportionality analysis from 2014 to 2019. *Immunotherapy*. May 2020;12(7):531-540. doi:10.2217/int-2019-0120
- Rosner S, Agrawal Y, Sun DO, et al. Immune-related ototoxicity associated with immune checkpoint inhibitors in patients with melanoma. *J Immunother Cancer*. Dec 2020;8(9):e001675. doi:10.1136/jitc-2020-001675
- Pagidicci G, Gidley PW, Nadler MS. Audiovestibular Toxicity Secondary to Immunotherapy: Case Series and Literature Review. *J Immunother Precis Oncol*. Feb 2022;5(1):1-9. doi:10.3640/jitp.2021.177
- Naples JG, Rhee-Narinsch W, Watson NW, et al. Ototoxicity Review: A Growing Number of Non-Platinum-Based Chemo- and Immunotherapies. *Otolaryngol Head Neck Surg*. Apr 2023;168(4):658-668. doi:10.1177/01945998221094457
- Schlaeter JA, Kay-Hwang S, Liao J, et al. Effect of neoadjuvant immunotherapy on hearing in patients with head and neck squamous cell carcinoma. *Sci Rep*. Jul 29 2023;13(1):27558. doi:10.1038/s41598-023-13705-9
- Pearson SE, Camino C, Shabir M, Baguley DM. The impact of chemotherapy-induced ototoxicity on quality of life in cancer survivors: a qualitative study. *Cancer Surv*. Oct 2022;16(5):979-987. doi:10.1007/s11764-021-01089-5
- Pearson SE, Taylor J, Peter J, Baguley DM. Cancer survivors treated with platinum-based chemotherapy affected by ototoxicity and the impact on quality of life: a narrative synthesis systematic review. *Int J Audiol*. Nov 2019;58(11):685-695. doi:10.1080/14992027.2019.1660918
- National Cancer Institute (U.S.). Common terminology criteria for adverse events (CTCAE), version 5.5 ed. NIH publication. U.S. Dept. of Health and Human Services, National Institutes of Health, National Cancer Institute; 2017.
- Association. AS-L-H. *Audiologic management of individuals receiving cochleotectic drug therapy*. , vol 36. ASHA; 1994.
- Theunissen EA, Drescher WA, Latenstein MN, et al. A new grading system for ototoxicity in adults. *Ann Otol Rhinol Laryngol*. Oct 2014;123(10):711-8. doi:10.1177/0003489414534010

Results

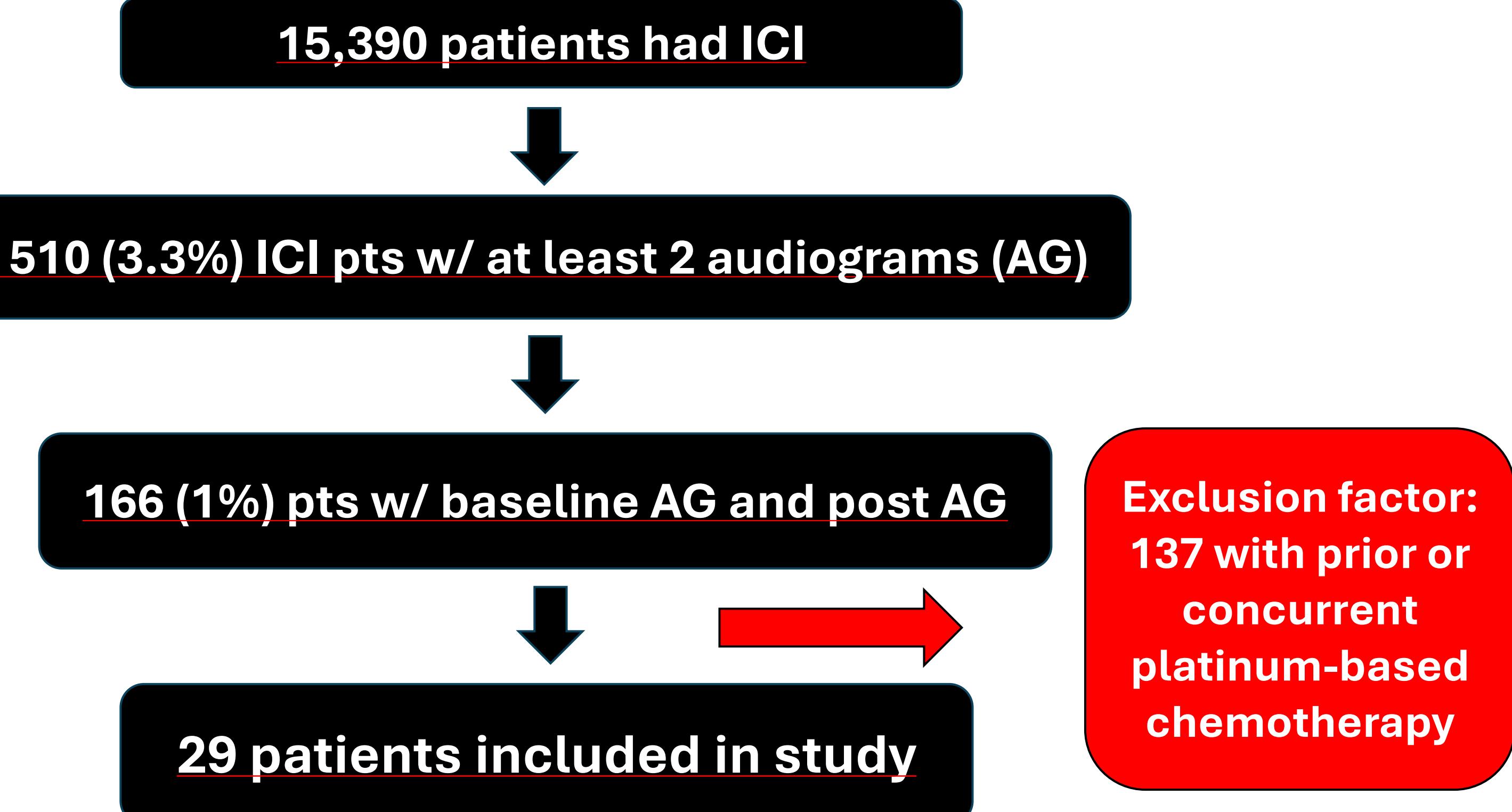


Figure 1- Identifying patient cohort and current percentage of patients receiving ICI and auditory monitoring.

Incidence of ICI-Related Hearing Loss

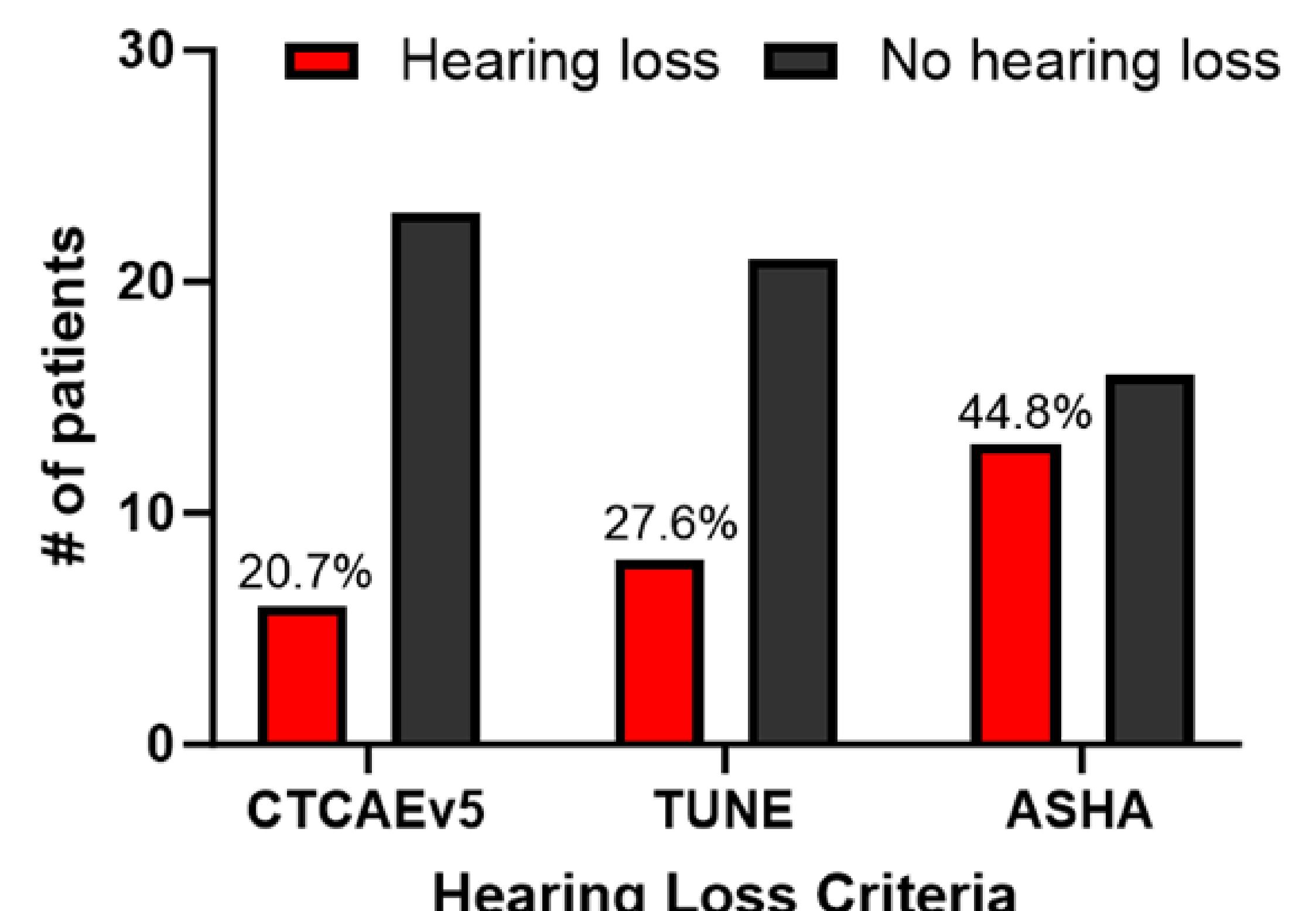


Figure 2- Incidence of hearing loss per CTCAE, TUNE, and ASHA scales.

Patient Factor	N(%) or mean ± SD
Age at start of ICI, years	65.9 ± 16.0
Male sex	18 (62%)
No. of ICI cycles	6.4 ± 6.5
No. of pts receiving >1 agent	4 (14%)
Time from ICI to post- AG, days	121.7 ± 114.4
Otologic Surgery	
None/Prior	17 (59%)
During	12 (41%)
HN Radiation	
14 (48%)	
Radiation dose to left cochlea, Gy	15.2 ± 16.6
Radiation dose to right cochlea, Gy	15.4 ± 14.5

Table 1- Cohort characteristics.

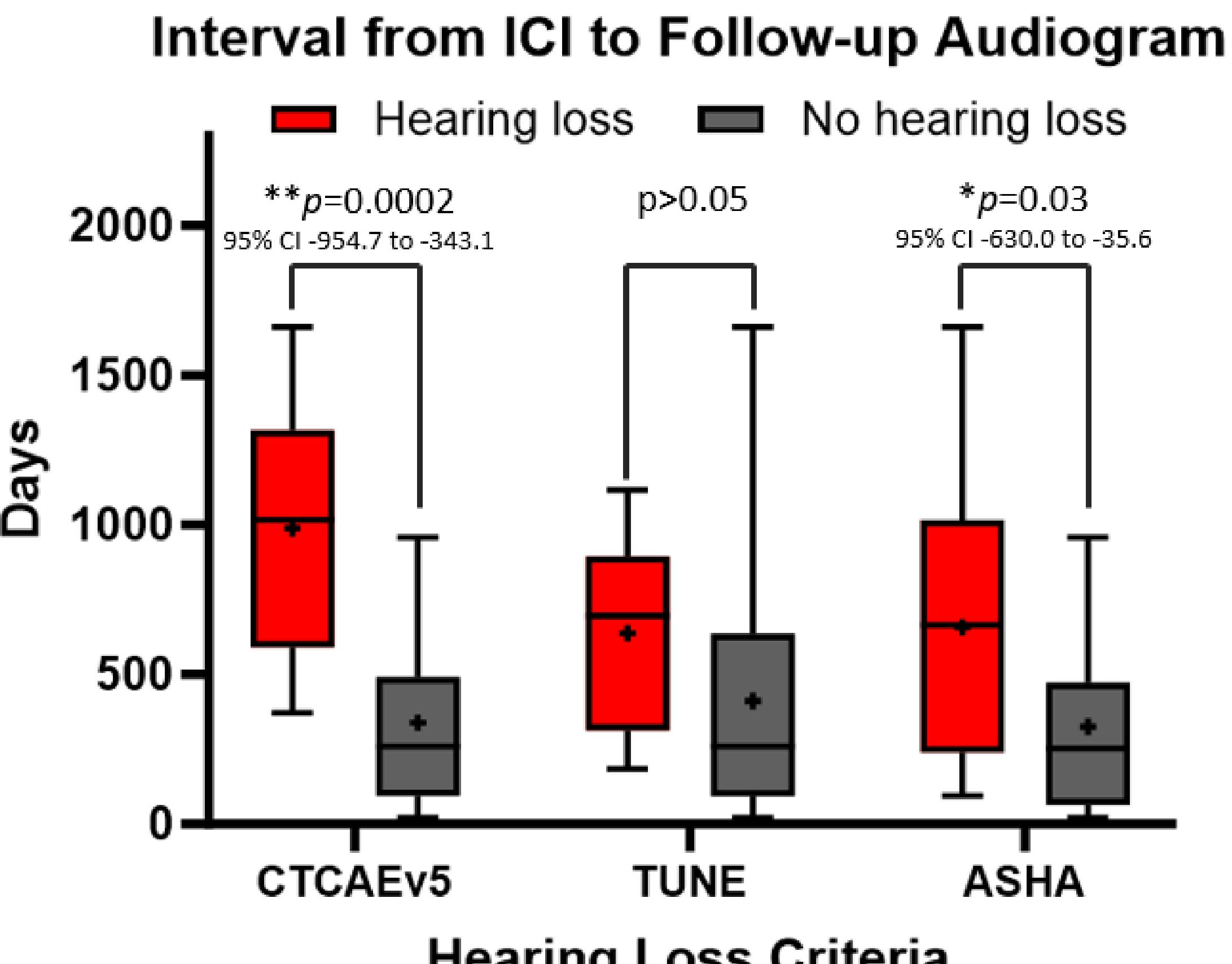


Figure 3- Time from ICI initiation to follow-up AG between HL and non-HL patients.

Discussion & Conclusion

- Ototoxic hearing loss is a side effect of ICI treatment.
- Possible mechanisms leading to HL:
 - Damage to intra-labyrinthine melanocyte-like cells.
 - Pathophysiological response resembling autoimmune inner ear disease.
- Enrollment in auditory monitoring protocols is insufficient.³⁻⁷
- Limitations:** Retrospective design, small sample size, and vestibular and tinnitus morbidity unanswered.

Conclusion:

- Hearing loss found in 20 – 45% of our ICI patient cohort.
- Further larger retrospective and prospective studies are needed.
- Auditory monitoring protocols are recommended for patients receiving ICI.