

Talia A Wenger BA¹, Casey Collet MD², Jonathan West MD², Uttam K Sinha MD²

¹Keck School of Medicine of the University of Southern California, Los Angeles, CA

²Caruso Department of Otolaryngology – Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA

BACKGROUND

- Primary immunodeficiency disorders (PID) are associated with an increased risk of malignancy (skin and hematologic) potentially due to decreased surveillance of dysplastic cells and/or increased risk of persistent oncogenic infection^{1,2}
- Immunocompromised patients are at an increased risk of head and neck cancer (HNC)^{3,4}
- HNC incidence and outcomes in patients with PID has not been investigated

OBJECTIVES

- Determine the rate of HNC among patients with PID compared to the general US population
- Determine the rate of mortality, lung metastases, failure to thrive and malnutrition in patients with HNC and PID, compared to those without PID
- Determine the rate of post-operative infection and sepsis in patients with HNC and PID, compared to those without PID

METHODS

Data sources

- TriNetX: global health research network of deidentified EMRs
- NCI SEER 22-registry database⁵

Incidence Study

- Created PID cohort using TriNetX and general population cohort using SEER database
- TriNetX Cohort
 - Patients with PID ≥ 1 year and no HIV history; 2017–2021
 - Determined annual incidence of oral cavity/pharyngeal & laryngeal cancers via TriNetX “Incidence & Prevalence” function
- SEER Cohort – general population
 - Pooled US HNC incidence from 2017–2021, calculated incidence rate per 100,000 by age using SEER*Stat
- Determined standardized incidence ratio (SIR) and 95% CI

Overall Outcomes

- PID cohort: Age ≥ 18 , PID diagnosis preceding HNC
- No PID cohort: Age ≥ 18 , HNC without PID
- Exclusion criterion: HIV infection
- Index event: HNC diagnosis
- Compared the following HNC outcomes by PID status: rate of mortality, lung metastasis, failure to thrive, malnutrition

Post-Operative Outcomes

- PID HNS Cohort: Age ≥ 18 , PID preceding HNC + surgery
- No PID HNS Cohort: Age ≥ 18 , HNC + surgery, no PID
- Exclusion criterion: HIV infection
- Index event: first head & neck surgery
- Compared the following by PID status: rate of infection, sepsis, skin/soft tissue infection

Statistical Analysis for Outcomes Analysis

- 1:1 propensity matching (age, sex, race, ethnicity, tobacco/alcohol use, AJCC stage)
- Advanced analytics for association⁶
- Statistical significance $p \leq 0.05$

CONTACT

Talia Wenger (KSOM c/o 2026) - tawenger@usc.edu
Jonathan West MD - jonathan.west@med.usc.edu

RESULTS

- PID patients:** ↑ risk of oral/pharyngeal (4.9x) and laryngeal (4.4x) cancers, especially in younger cohorts
- After 1:1 propensity matching, cohorts of patients with HNC with and without PID each contained 7,057 patients
 - Average age 62.5, 65.2% male, ~75% white, 78.3% non-Hispanic, 13.5% alcohol users, and 10.2% tobacco users
- HNC + PID:** ↑ mortality, recurrence, failure to thrive, malnutrition
- After 1:1 propensity matching, cohorts of patients with HNC and head and neck surgery with and without PID each contained 4,145 patients
 - Average age 62.4, ~66% male, ~75% white, ~77% non-Hispanic, 17.5% alcohol users, and 14.6% tobacco users
- HNC surgery + PID:** ↑ post-op complications (e.g., infections)

FIGURES & TABLES

Table 1: HNC incidence PID patients vs. general US population						
Cancer Subsite	Age Cohort	Population	No. observed cases	No. expected cases	US Incidence per 100,000	SIR (95% CI)
Oral cavity and pharynx	40-44	20,176	19	1.08	5.37	17.6 (10.5-26.3)
	45-49	24,407	19.5	2.52	10.3	7.74 (4.69-11.6)
	50-54	30,247	41.8	5.67	18.8	7.37 (5.30-9.77)
	55-59	37,954	58.8	10.9	28.8	5.37 (4.09-6.83)
	60-64	42,426	74	15.8	37.3	4.68 (3.67-5.80)
	65-69	42,861	82.8	18.5	43.3	4.47 (3.56-5.48)
	70-74	33,177	61.6	15.2	45.9	4.04 (3.10-5.12)
	75-79	20,351	40.4	9.63	47.3	4.20 (3.00-5.59)
	80-84	9,765	16	4.64	47.5	3.45 (1.97-5.35)
	Overall					4.93 (4.43-5.37)
Larynx	55-59	38,857	18.3	2.57	6.62	7.12 (4.24-10.8)
	60-64	42,651	18.6	4.15	9.73	4.48 (2.68-6.75)
	65-69	42,983	19	4.92	11.5	3.86 (2.32-5.79)
	70-74	32,930	14.8	4.14	12.6	3.58 (1.99-5.63)
	75-79	22,362	12	2.83	12.7	4.24 (2.18-6.97)
	Overall					4.44 (3.58-5.51)

Figure 2: Post-operative outcomes of HNC in patients with vs. without PID

Odds ratio (95% CI) of sepsis, post-operative infections, and skin or soft tissue infections in the 30 days following initial head and neck surgery in HNC patients with vs. without PID

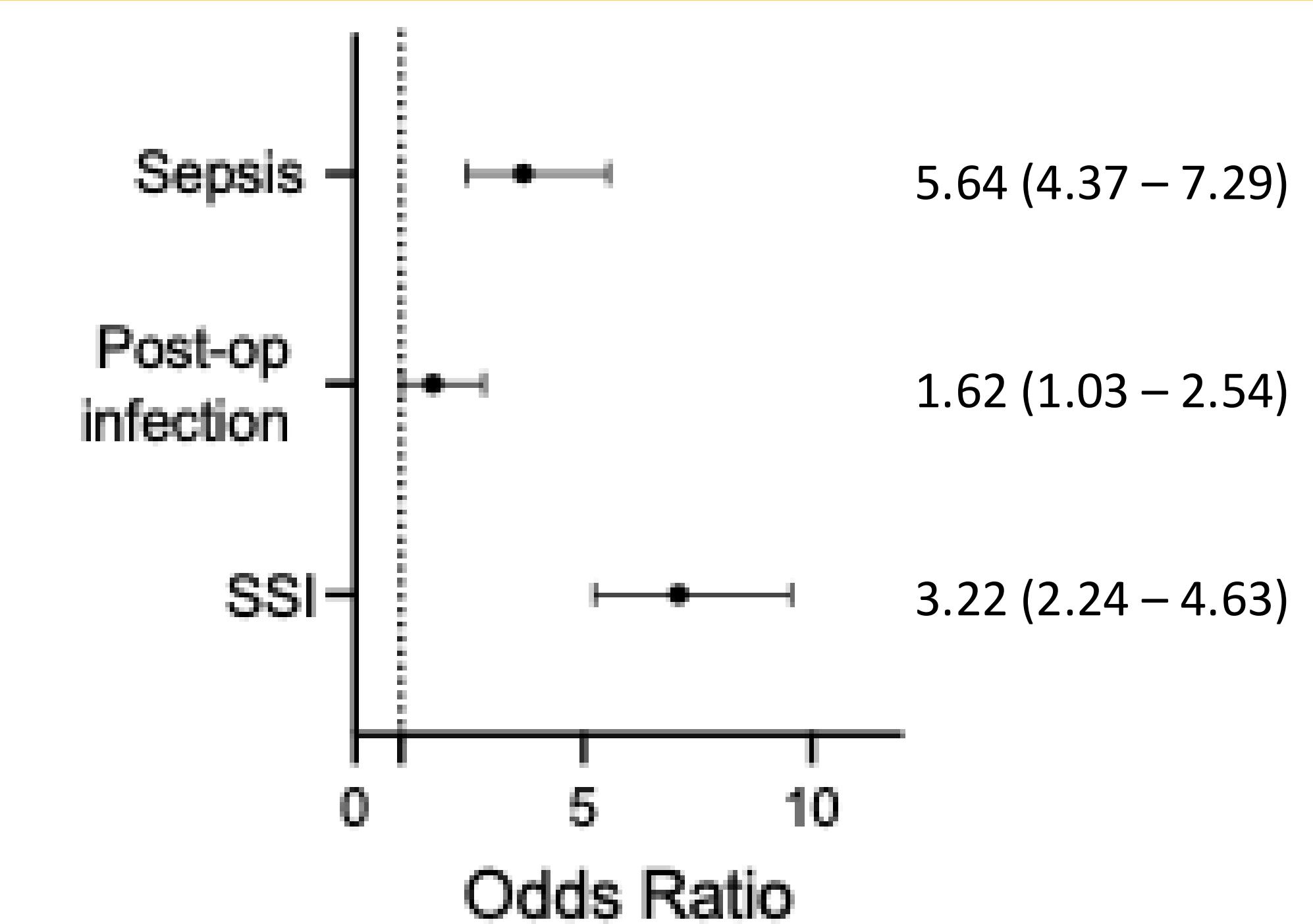
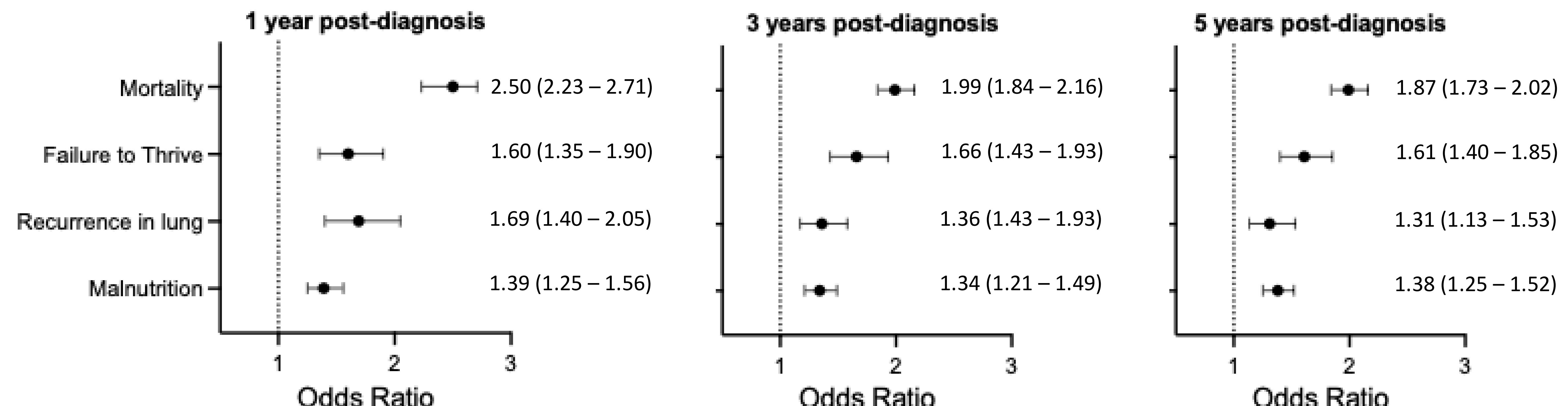



Figure 1: Overall HNC outcomes in patients with or without PID

Odds ratio (95% CI) of mortality, failure to thrive, recurrence in lung, and malnutrition in HNC patients with PID compared to patients without PID at 1-year, 3-years, and 5-years post-HNC diagnosis

DISCUSSION & CONCLUSIONS

Findings

- PID patients: ↑ HNC risk, especially at younger ages
- PID + HNC: worse outcomes, ↑ mortality, recurrence, malnutrition, failure to thrive
- PID + HNC surgery: ↑ post-op risks, infection, sepsis

Potential Mechanisms/Areas of Future Research

- Impaired immunosurveillance of dysplastic cells
- ↑ rate of HPV infection & decreased clearance

Implications for Patient Care

- Consider increased HNC screening in patients with PID
- More aggressive treatment strategies may be warranted
- Explore the role of immunotherapy in this population

Limitations

- Unable to distinguish HPV+ vs. HPV- HNC in TriNetX/SEER
- TriNetX: limited data on rare outcomes to protect patient privacy, unable to assess HNC rates by PID subtype

REFERENCES

- Kersey JH, Shapiro R, Filipovich AH. Relationship of immunodeficiency to lymphoid malignancy : The Pediatric Infectious Disease Journal. Accessed April 17, 2025. https://journals.lww.com/pidj/abstract/1988/05001/Relationship_of_immunodeficiency_to_lymphoid.3.aspx
- Chow MT, Möller A, Smyth MJ. Inflammation and immune surveillance in cancer. *Seminars in Cancer Biology*. 2012;22(1):23-32. doi:10.1016/j.semcan.2011.12.004
- Engels EA. Epidemiologic perspectives on immunosuppressed populations and the immunosurveillance and immunocontainment of cancer. *Am J Transplant*. 2019;19(12):3223-3232. doi:10.1111/ajt.15495
- D'Arcy ME, Coghill AE, Lynch AE, et al. Survival after a cancer diagnosis among solid organ transplant recipients in the United States. *Cancer*. 2019;125(6):933-942. doi:10.1002/cncr.31782
- Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER Research Data, 8 Registries, Nov 2023 Sub (1975-2021) - Linked To County Attributes - Time Dependent (1990-2022) Income/Rurality, 1969-2022 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2024, based on the November 2023 submission.
- TriNetX. TriNetX Advanced Analytics. July 17, 2024. Accessed August 27, 2024. <https://trinext.com/solutions/live-platform/features/advanced-analytics/>