

Prevalence, Classification, and Severity of Hearing Loss in Patients with Type 2 Diabetes Mellitus

Cory Hyun-su Kim, BS^{1, 2}; Katherine Lauritsen, BS^{3, 4}; Shaun A. Nguyen, MD¹; Ted Meyer, MD, PhD¹; Evan Cumpston, MD⁴; Jonathan Ting, MD⁴; Robert Labadie, MD, PhD¹

¹Department of Otolaryngology - Medical University of South Carolina, ²Nova Southeastern University – College of Osteopathic Medicine, ³Rutgers-New Jersey Medical School, ⁴Department of Otolaryngology – Indiana University School of Medicine

Objectives

- To synthesize high-quality data reporting the prevalence of hearing loss in patients with type 2 diabetes mellitus (T2DM).
- To characterize hearing loss in T2DM patients by classifications (types), laterality, and severity (degrees).
- To perform a systematic review and meta-analysis according to PRISMA guidelines.

Introduction

- Hearing loss is the most common sensory deficit worldwide; sensorineural hearing loss (SNHL) is the most prevalent subtype.^{1, 2}
- By 2050, an estimated 2.45 billion people will experience hearing loss globally.³
- Type 2 diabetes mellitus (T2DM) is a growing global health burden and is associated with multiple microvascular complications (retinopathy, nephropathy, neuropathy).⁴
- Emerging evidence links T2DM with hearing loss, with proposed mechanisms including: cochlear microvascular damage, oxidative stress and metabolic dysregulation, and auditory neuropathy.⁵⁻⁷
- Reported prevalence rates of hearing loss in T2DM vary widely due to differences in methodology, populations, and diagnostic criteria.
- A comprehensive synthesis is lacking to clarify the true association between T2DM and hearing loss, which may impact screening guidelines and early intervention strategies.

Methods and Materials

- Design:** Systematic review and meta-analysis conducted according to PRISMA guidelines.
- Databases searched:** PubMed, SCOPUS, CINAHL, and Cochrane Library (through October 14, 2024).
- Inclusion criteria:** Studies of adults (≥ 18 years) with T2DM, cross-sectional or cohort studies evaluating hearing loss.
- Exclusion criteria:** Non-English, animal studies, case reports, reviews, and studies without full text.
- Data extraction:** Patient demographics, prevalence, type, laterality, and degree of hearing loss.
- Quality assessment:** ROBINS-E tool, JBI critical appraisal checklist, Oxford Centre for Evidence-Based Medicine levels of evidence assigned.
- Statistical analysis:** Meta-analysis of proportions, means, and relative risks (RR) with 95% confidence intervals.

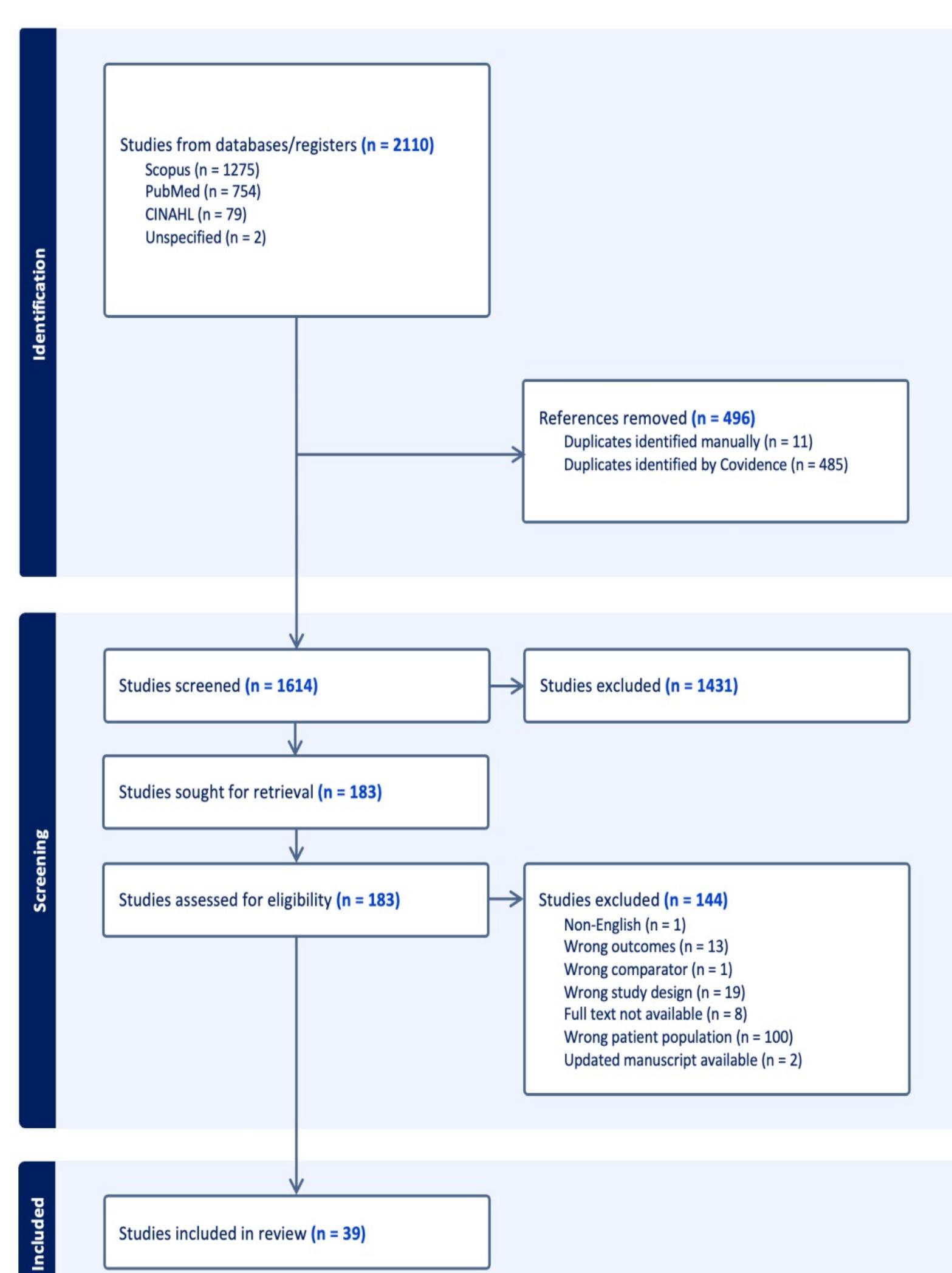


Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses ('PRISMA') diagram

Results

- Thirty-nine studies pertaining to hearing loss (HL) in adults with or without T2DM were included (**n=88,395 with T2DM; n=20,337 controls**). Mean age for T2DM and control groups were 50.3 and 46.7; proportions of females were 63.8% and 64.3%, respectively. Mean HbA1c in T2DM group was **8.4%**; control group had **4.8%**. Mean diabetes duration in T2DM group was **9.1 years**.
- The **T2DM group** had significantly higher prevalence and relative risk than the **control group** of hearing loss in either ear (**53.0% vs. 25.2%, $\Delta=27.7\%$, $p<0.0001$; relative risk (RR) = 2.3, 95% CI: 1.1-4.8**).
- The **sensorineural** and **bilateral HL** were the most prominent classification and laterality of HL in the **T2DM group**; statistical significance ($p<0.0001$) in difference were detected when compared to the **control group** (**46.2% vs. 18.1%; 29.6% vs. 6.9%, respectively**).
- According to WHO criteria, **T2DM group** showed the most prominent severity of HL in **mild (26-40dB)** and **moderate (41-60dB)** degrees; statistical significance ($p<0.0001$) in difference were detected when compared to the **control group** (**22.1% vs. 8.2%; 25.5% vs. 9.3%, respectively**).

	Prevalence of hearing loss (95% CI)	Conductive hearing loss (95% CI)	Sensorineural hearing loss (95% CI)	Mixed hearing loss (95% CI)	Unilateral hearing loss (95% CI)	Bilateral hearing loss (95% CI)
T2DM group	53.0% (38.7%-67.0%)	5.0% (2.3%-9.3%)	46.2% (19.5%-74.1%)	10.4% (7.7%-13.7%)	15.0% (7.0%-25.4%)	29.6% (21.6%-38.2%)
Control group	25.2% (11.8%-41.7%)	-	18.1% (3.0%-42.0%)	7.2% (1.7%-16.3%)	7.5% (4.1%-12.6%)	6.9% (0.5%-20.1%)
Δ ; P value	27.8%; $P < .0001$	-	28.1%; $P < .0001$	3.2%; $P = .1931$	7.5%; $P = .0083$	22.7%; $P < .0001$

Abbreviations: CI, confidence interval; T2DM, type 2 diabetes mellitus.

Figure 4. Prevalence, classification, and laterality of hearing loss in T2DM group compared to control

	WHO criteria			
	Mild (26-40 dB) (95% CI)	Moderate (41-60 dB) (95% CI)	Severe (61-80 dB) (95% CI)	Profound (>80 dB) (95% CI)
T2DM group	22.1% (5.4%-45.7%)	25.5% (14.5%-38.3%)	8.5% (6.2%-11.3%)	1.7% (0.04%-7.8%)
Control group	8.2% (1.2%-20.7%)	9.3% (3.8%-17.0%)	4.1% (3.3%-5.1%)	-
Δ ; P-value	13.9%; $P < .0001$	16.2%; $P < .0001$	4.4%; $P = .0001$	-

Abbreviations: CI, confidence interval; T2DM, type 2 diabetes mellitus; WHO, World Health Organization.

Figure 5. Severity of hearing loss in T2DM group compared to control according to the WHO criteria

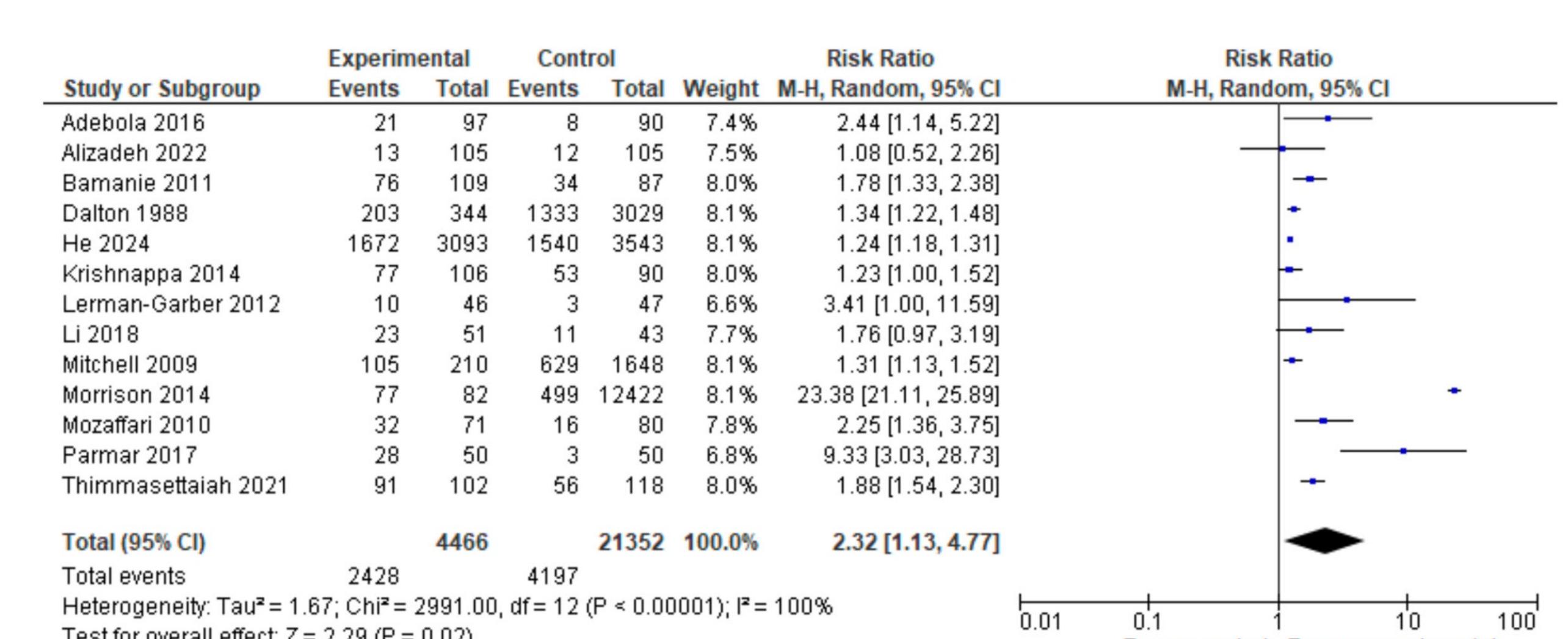


Figure 6. Relative risk for prevalence of hearing loss in T2DM group compared to control

Discussion

- Patients with T2DM show a **significantly higher prevalence and risk of hearing loss**, especially sensorineural and bilateral, confirming diabetes as an independent risk factor.
- Experimental evidence in diabetic mouse models** demonstrates cochlear microangiopathy, mitochondrial dysfunction, and synaptopathy, supporting biological mechanisms underlying hearing loss in T2DM.⁸
- Findings emphasize the need for **routine hearing screening and early intervention** in patients with T2DM to reduce long-term quality-of-life and healthcare burden.

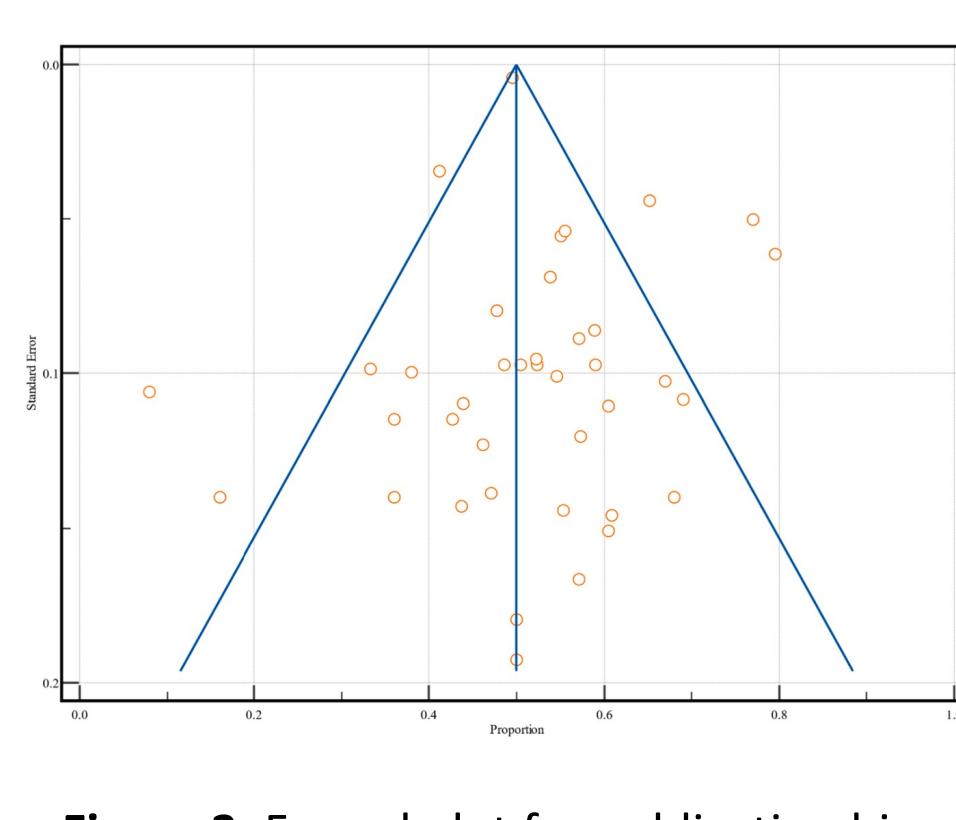


Figure 3. Funnel plot for publication bias

Conclusions

- Patients with type 2 diabetes mellitus have a significantly higher risk of sensorineural, often bilateral, hearing loss—most commonly mild to moderate—underscoring the need for routine screening and early intervention.

Contact

Shaun A. Nguyen, MD
Department of Otolaryngology – Medical University of South Carolina
135 Rutledge Avenue, Room 1133, MSC 550 Charleston, SC 29425
nguyensh@musc.edu

References

- Tanna RJ, Lin JW, De Jesus O. Sensorineural Hearing Loss. StatPearls; 2025.
- Shefeld AM, Smith RJH. The Epidemiology of Deafness. Cold Spring Harbor Perspect Med. 2019;9(9):a033258. doi:10.1101/cshperspect.a033258
- Haile LM, Kamenov K, Brant PS, et al. Collaborators GBDHL. Hearing loss prevalence and years lived with disability, 1990-2019: findings from the Global Burden of Disease Study 2019. Lancet. 2021;397(10278):996-1009. doi:10.1016/S0140-6736(21)00516-X
- Geng T, Zhu K, Lu Q, et al. Healthy lifestyle behaviors, mediating biomarkers, and risk of microvascular complications among individuals with type 2 diabetes: a cohort study. PLoS Med. 2023;20(1):e1004135. doi:10.1371/journal.pmed.1004135
- Ren H, Wang Z, Mao Z, et al. Hearing loss in type 2 diabetes in association with diabetic neuropathy. Arch Med Res. 2017;48(7):631-637. doi:10.1016/j.arcmed.2018.02.001
- Aladag I, Ebilgen A, Güven M, Atış Ö, Erkorkmaz Ü. Role of oxidative stress in hearing impairment in patients with type two diabetes mellitus. J Laryngol Otol. 2009;123(9):957-963. doi:10.1017/S0022215109004502
- Fukushima H, Cureoglu S, Schachner PA, Paparella MM, Harada T, Oktay MF. Effects of type 2 diabetes mellitus on cochlear structure in humans. Arch Otolaryngol Head Neck Surg. 2006;132(9):934-938. doi:10.1001/archotol.132.9.934
- Lyu AR, Kim TH, Shin SA, et al. Hearing impairment in a mouse model of diabetes is associated with mitochondrial dysfunction, synaptopathy, and activation of the intrinsic apoptosis pathway. Int J Mol Sci. 2021;22(16):8807. doi:10.3390/ijms22168807