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INTRODUCTION RESULTS CONCLUSIONS

 Rapid advances in the development of artificial  ChatGPT had the highest accuracy amongst the
intelligence technology has led to the emergence Average Accuracy by Model vs. Human * 519 text based questions were tested LLMs on the facial plastic surgery board style
of large language models (LLMs). 007 analyzed with these LLMs. questions, far exceeding the performance of

* These models are capable of understanding and ChatGPT displayed a 71.9% Copilot and Gemini.
generating human-like interactions. In recent years, Ol 71.9% accuracy rate, while humans e When all three Als provided the same answer, their
these models have demonstrated steadily rising 2 ol 63.0% scor.ed 68.2%, followed by. | collective accuracy far exceeded human
performance on standardized medical exams, > 50.7% Copilot at 63.0% and Gemini performance. However, the average accuracy of
posing the question of whether they could serve as % ol at 50°7.%° N these models was recorded to be lower than the
a learning aid in medical education. 5 * LLMs significantly outscored average known human performance,

* Most of the existing literature has focused on ol humans fo.r .questions that * This signifies the ongoing need to be cautious
broader licensing examinations such as the USMLE. were classified as "easy”, when considering the use of artificial intelligence in

* Facial plastic and reconstructive surgery is a highly however they all lagged medical educational settings.

0 | — |. .
specialized field with distinct procedural Human ChatGPT Gemint Copilot behind human performance

techniques and postoperative management Figure 1. Accuracy (%) of LLM and humans on the hardest "expert" Ievel
orinciples. questions. IMPLICATIONS

Accuracy by Confidence Level (60-100% Confidence)

* This study addresses that gap by utilizing three of 00 * LLM performance was Athouah eatly oert | N .
. « . o : o
the most widely used LLMs: ChatGPT, Gemini, and ol > Cemin strongly correlated with one though early perrormance is promising and the
Copilot. COP”Ot/‘/ = another, as when all three use of LLMs may provide a quick resource for
| < . . .
+ By comparing each model’s accuracy and Sl — models agreed on the answer che;kolngfansgversdand ggttlnfg explanstlonﬁ, those
. . . (0
confidence against human performance metrics, o they showed a 86.1% :tu. \I"nlg or Doar examlr;atl(;).ﬂ.s such as the
=
there will be stronger metrics to determine therole ¢ 40 accuracy, however when 2/3 af'? P aSt": =Xam must T I | |gent.(|jn ”;’t.
of LLM in medical education. ol agreed that number dropped re ymg.on thelr answers solely to guide their
to 60%. educational plans.
METHODS oL , , , e Overconfidence was * These LLM's showed strong performance, and
Q:\Q Qﬁg 090 O orevalent: All three models when the confidence was high alongside a
S A S Q . e
. . . 9 indi ' ' uestion that was familiar, it not only gave the
* Five hundred and nineteen text-based questions Reported Confidence Bin (%) mghcated very h"%h f:onflder;ce Sorrect AhSwer more ofter’1 than notybit + aleo
: : . - opilot 82.6%, and Gemini :
reconstructive surgery question bank were Model Accuracy by Question Difficulty P ! _ . Th e of LLM's in education |
d bv ChatGPT 35 G ini 2 & Flash d 100 91.3% on average, desp|te e role o S IN eaucation IS rapidly
answered by Chat .5, Gemini 2.5 Flash, an B Human . , di 9 del
Copilot  ChatGPT their lower accuracies, €xpanding, and as modaels progress, more
. . 80 | Copilot indicating a significant importance may be placed upon utilizing them as
* Question characteristics and human performance Comin _ | - method of learnine and practicine educational
were recorded, and LLMs were tasked with Q) overconfidence bias. 5 P 2
) 2 .
L . . . < 60f . ’ - material.
providing confidence percentages alongside their > ChatGPT’s confidence was the
ANSWers © only LLM that showed
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Figure 3. Question difficulty vs Performance
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