

Somatic Mutational Landscape of Laryngeal Squamous Cell Carcinoma: Implications for Tumor Progression and Precision Medicine

Gabriel Bitar, Nathan Tran, Beau Hsia, Saif Alshaka, Sean Polster, Vijay Patel

INTRODUCTION

- Laryngeal squamous cell carcinoma (LSCC) is the most common malignancy of the larynx, with ~12,650 new cases and 3,880 deaths expected in the U.S. in 2024.
- Prognosis remains poor for advanced disease, and survival has plateaued despite advances in chemoradiotherapy.
- Genomic profiling has identified recurrent mutations (e.g., TP53, FAT1, NOTCH1, KMT2D), but sex-specific and metastasis-specific alterations are poorly characterized.
- This study leverages the AACR Project GENIE dataset to define the somatic mutational landscape of LSCC and explore associations with tumor progression, metastasis, and precision therapy.

METHODS

- Retrospective cross-sectional genomic analysis of 135 LSCC tumor samples from the AACR Project GENIE database (2017–2024).
- Clinical and genomic data extracted from cBioPortal (v16.1), including somatic mutation data and demographic variables.
- Comparative analyses performed by tumor site (primary vs. metastatic) and sex using chi-squared and Mann-Whitney U tests.
- Co-occurrence and mutual exclusivity assessed to identify potential molecular subtypes.

RESULTS

Cohort Characteristics

- 135 samples from 130 patients: 89.2% male, 71.5% White.
- 59.2% primary tumors, 39.2% recurrent/metastatic.

Top Somatic Mutations

- TP53 (89.6%), KMT2D (27.4%), FAT1 (20.7%), NOTCH1 (20.7%).

Metastasis-Associated Mutations

- ATP8B1 ($p < 0.001$) and SAMD9L ($p < 0.001$) were exclusively found in metastatic samples.
- DMD ($p = 0.049$) was exclusive to primary tumors.
- KMT2D was significantly more frequent in primary tumors ($p = 0.027$).

Sex-Specific Differences

- CDK8 mutations were seen only in females ($p = 0.011$).
- ATP8B1 ($p = 0.013$) and EPHB2 ($p = 0.024$) were seen only in males.

Mutual Exclusivity

- KMT2D and TP53 mutations showed significant mutual exclusivity ($p = 0.018$), suggesting distinct molecular subtypes.

Top mutations in larynx squamous cell carcinoma

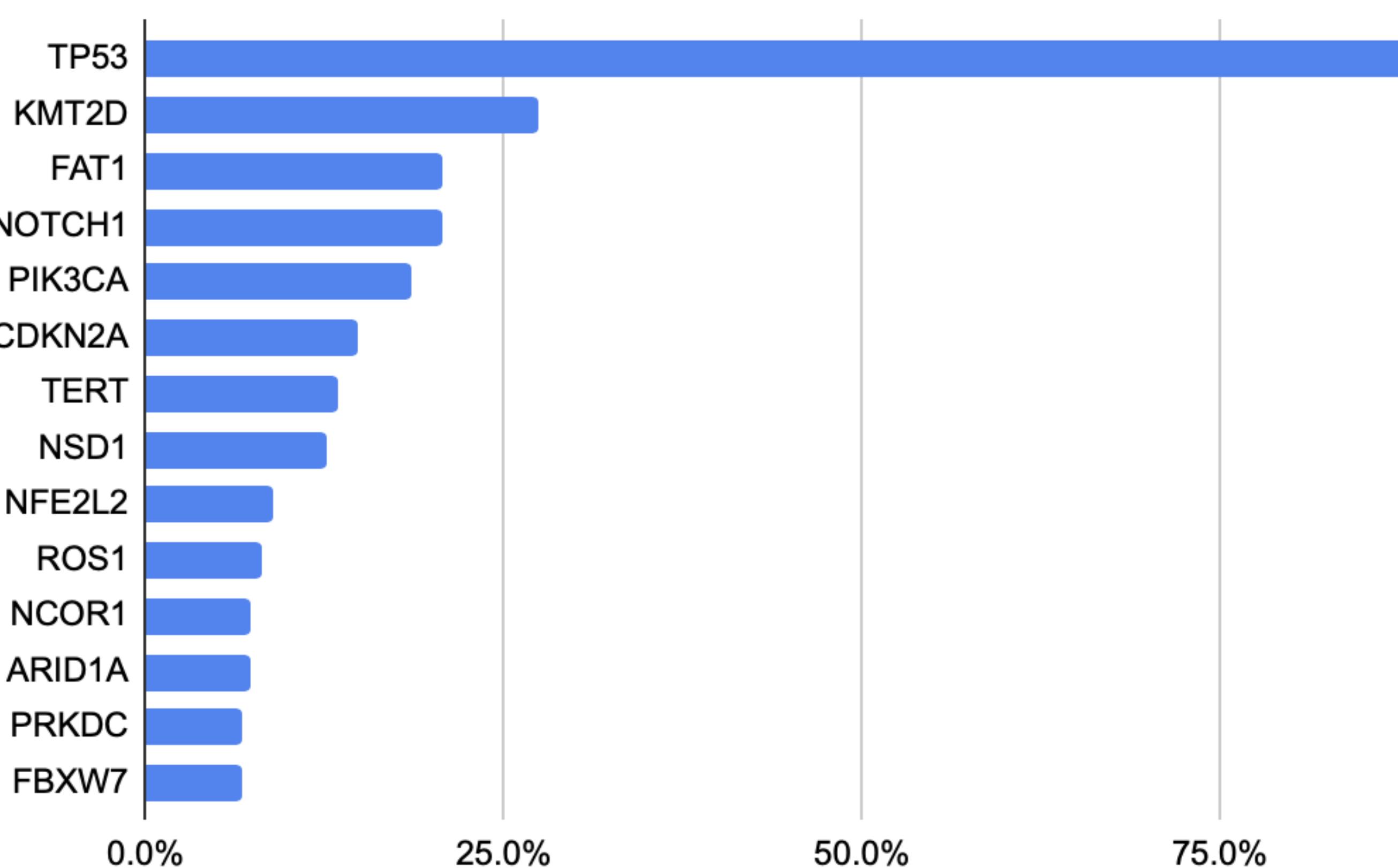


Figure 1. Bar Chart Illustrating Top Somatic Mutations in Larynx Squamous Cell Carcinoma Patients

DISCUSSION

- LSCC demonstrates marked genomic heterogeneity, dominated by TP53 alterations but also involving chromatin-modifying genes such as KMT2D.
- The mutual exclusivity of TP53 and KMT2D suggests biologically distinct molecular subtypes, which may inform targeted therapy development.
- The discovery of ATP8B1 and SAMD9L in metastatic disease implicates these genes as potential biomarkers for tumor dissemination and therapeutic targeting.
- Gender-specific mutations (CDK8 in females; ATP8B1 and EPHB2 in males) may reveal sex-linked oncogenic pathways, though further validation is needed given the small female sample size.
- These findings underscore the value of comprehensive genomic profiling in guiding precision oncology for LSCC.

CONCLUSION

- TP53 remains the dominant driver in LSCC, but distinct genomic alterations define primary vs. metastatic and male vs. female disease.
- ATP8B1 and SAMD9L represent promising biomarkers for metastatic disease, while CDK8 and EPHB2 highlight potential sex-specific therapeutic targets.
- Genomic stratification of LSCC may support the development of personalized treatment strategies and targeted therapies to improve patient outcomes.

REFERENCES

- Jakstas T, et al. *Int J Mol Sci.* 2024;25(21):11849.
- Nadal A, et al. *Virchows Arch.* 2024;485(6):965-976.
- Lee J, et al. *Proc Natl Acad Sci USA.* 2009;106(21):8513-8518.
- Muijlwijk T, et al. *Nat Commun.* 2024;15:9060.
- Nassar SI, et al. *Cancers.* 2024;16(18):3129.