

INTRODUCTION

Virtual Surgical Planning (VSP) uses preoperative imaging and computer-assisted design/manufacturing to generate cutting guides and patient-specific plates for maxillary and mandibular free flap reconstruction.

Potential advantages: improved precision, ability to perform complex reconstructions, and reduced intraoperative decision-making.

Concern: additional costs from guides, plates, and engineering time.

Key question: Do these added costs translate into greater value using rigorous methodology such as time-driven activity-based costing (TDABC)?

METHODS

Design: Retrospective 1:1 matched cohort (2018–2024) of osseous free flap reconstructions across 2 tertiary centers (n=98).

TDABC Framework (applied at one institution):

Institutional pilot program (2016) integrated TDABC into service lines with outcome tracking and redesign interest.

Episode of care defined: operative + postoperative admission (up to 30-day readmission).

Process mapping: Modified Delphi technique to chart each activity (pre-op, OR, PACU, inpatient care).

Resource costing:

Personnel: based on logged time × salary/benefits (FTE).

Physicians: estimated using work-RVUs.

Supplies: itemized from institutional chargemaster.

Equipment/overhead: depreciation and indirect costs incorporated into *capacity cost rate* (CCR) for each setting (OR, ICU, ward).

Calculation: Total cost = Σ (CCR × time for each resource).

Analysis: Outcomes: operative/ischemia time, complications, margin status, plate removal, cost.

Cost drivers analyzed via generalized linear mixed model.

¹ Case Western Reserve University School of Medicine, Cleveland, OH

² Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, MI

³ Department of Otolaryngology—Head and Neck Surgery, University of Pittsburgh, Pittsburgh, PA

RESULTS

Table 1: Patient Demographics and Clinical Characteristics

Variable	VSP Group (n=49)	Conventional Group (n=49)
Demographics		
Sex, Male, n (%)	35 (71.4%)	37 (75.5%)
Marital Status		
Single, n (%)	8 (16.3%)	7 (14.3%)
Married/Partnered, n (%)	41 (83.7%)	42 (85.7%)
Free Flap Type, n (%)		
Fibula	31 (63.3%)	11 (22.4%)
Scapula/Osteocutaneous Lat Dorsi	9 (18.4%)	25 (51.0%)
Forearm/Other	9 (18.4%)	13 (26.5%)
Institution, n (%)		
Michigan	28 (57.1%)	29 (59.2%)
Vanderbilt	21 (42.9%)	20 (40.8%)
ECOG Performance Status		
0-1, n (%)	46 (93.9%)	46 (93.9%)
2+, n (%)	3 (6.1%)	3 (6.1%)
Clinical T Stage		
T1-T2, n (%)	7 (14.3%)	8 (16.3%)
T3-T4+, n (%)	42 (85.7%)	41 (83.7%)
Clinical N Stage		
N0-N1, n (%)	30 (61.2%)	31 (63.3%)
N2+, n (%)	19 (38.8%)	18 (36.7%)
Tumor Histology		
Squamous Cell Carcinoma, n (%)	41 (83.7%)	43 (87.8%)
Other, n (%)	8 (16.3%)	6 (12.2%)

Operative time: VSP vs. Conventional — 566.9 vs. 558.9 min (p = 0.775).

Bony segments: Higher with VSP (p = 0.002).

Ischemia time: VSP vs. Conventional — 89.1 vs. 92.3 min (p = 0.696).

Postoperative outcomes: No significant differences in complication rates, oncologic margins, or plate removal.

Cost of care (TDABC):

VSP: \$40,500 \pm 15,400

Conventional: \$38,600 \pm 21,860 (p = 0.15)

Cost drivers (GLMM, R² = 0.73):

Shorter operative time significantly lowered cost (p < 0.05).

Additional independent cost drivers: length of stay, return trips to OR, and number of free flaps.

Table 1: Clinical Outcomes Comparison

Outcome	VSP vs Control	P
Operative Characteristics		
Operative Time (min)	566.9(118.4) vs 558.9(152.9)	0.775
Mean (SD)		
Ischemia Time (min)	89.1(29.1) vs 92.3(33.6)	0.696
Mean (SD)		
Bony Segments	1.81(0.91) vs 1.33(0.63)	0.002
Mean (SD)		
Hospital Days	8.1(4.1) vs 7.5(2.9)	0.947
Mean (SD)		
Postoperative Complications		
Any Complication, n/N (%)	9/49 vs 10/49 (18.4% vs 20.4%)	1.000
Free Flap Complication, n/N (%)	1/21 vs 0/20 (4.8% vs 0.0%)	1.000
Return to OR, n/N (%)	8/21 vs 6/20 (38.1% vs 30.0%)	0.828
Complication Grade		
Mean (SD)	3.2 vs 2.9 (1.3) vs (1.5)	0.741
Oncologic Outcomes		
Positive Margins, n/N (%)	5/40 vs 9/44 (12.5% vs 20.5%)	0.494
Cancer Recurrence, n/N (%)	10/46 vs 16/49 (21.7% vs 32.7%)	0.336
Long-term Outcomes		
Plate Removal, n/N (%)	9/49 vs 8/49 (18.4% vs 16.3%)	1.000
Osteoradionecrosis, n/N (%)	15/49 vs 8/49 (30.6% vs 16.3%)	0.153
Death, n/N (%)	9/29 vs 7/32 (31.0% vs 21.9%)	0.679

Bold indicates p < 0.05

1

CONCLUSIONS

VSP enables more complex reconstructions without increasing ischemia time, complications, or plate removal.

Cost analysis showed VSP was not a significant driver of total care cost; operative time, LOS, and complications had greater influence.

VSP supports value-based care by allowing surgical precision and complexity without added financial burden.