

Predictors of Tracheostomy in Patients Undergoing Upper Aerodigestive Tract Reconstruction by Free Flap

Austin Rue, BA; Whitney Jin, BA; Michael DiLeo, BS; Angela Haskins, MD; David Hernandez, MD
Baylor College of Medicine – Houston, TX

Baylor
College of
Medicine®

OBJECTIVES

- Identify predictors of tracheostomy in patients undergoing aerodigestive tract reconstruction with a free flap following cancer resection surgery
- Quantify complications and adverse events in patients undergoing aerodigestive tract reconstruction

INTRODUCTION

- Patients are at risk for postoperative upper airway obstruction after aerodigestive reconstructive surgery¹
- High risk patients must be managed by elective tracheostomy or remain intubated and transferred to the ICU²
- Tracheostomy reduces risk of upper airway obstruction³
- May lead to decreased quality of life⁴
- Available scoring systems for tracheostomy have been shown to be inadequate for predicting which patients will undergo tracheostomy⁵

METHODS

- Retrospective cohort study
- 85 patients included (70 with tracheostomy and 15 without)
- Patients included if undergoing aerodigestive reconstructive surgery with free flap from 2016 to 2021 at Ben Taub Hospital in Houston, Texas
- Patients excluded if their procedure was a total laryngectomy or a cutaneous reconstruction that did not involve the aerodigestive tract
- Univariate statistical analyses were conducted to evaluate for predictors of tracheostomy and study outcome measures

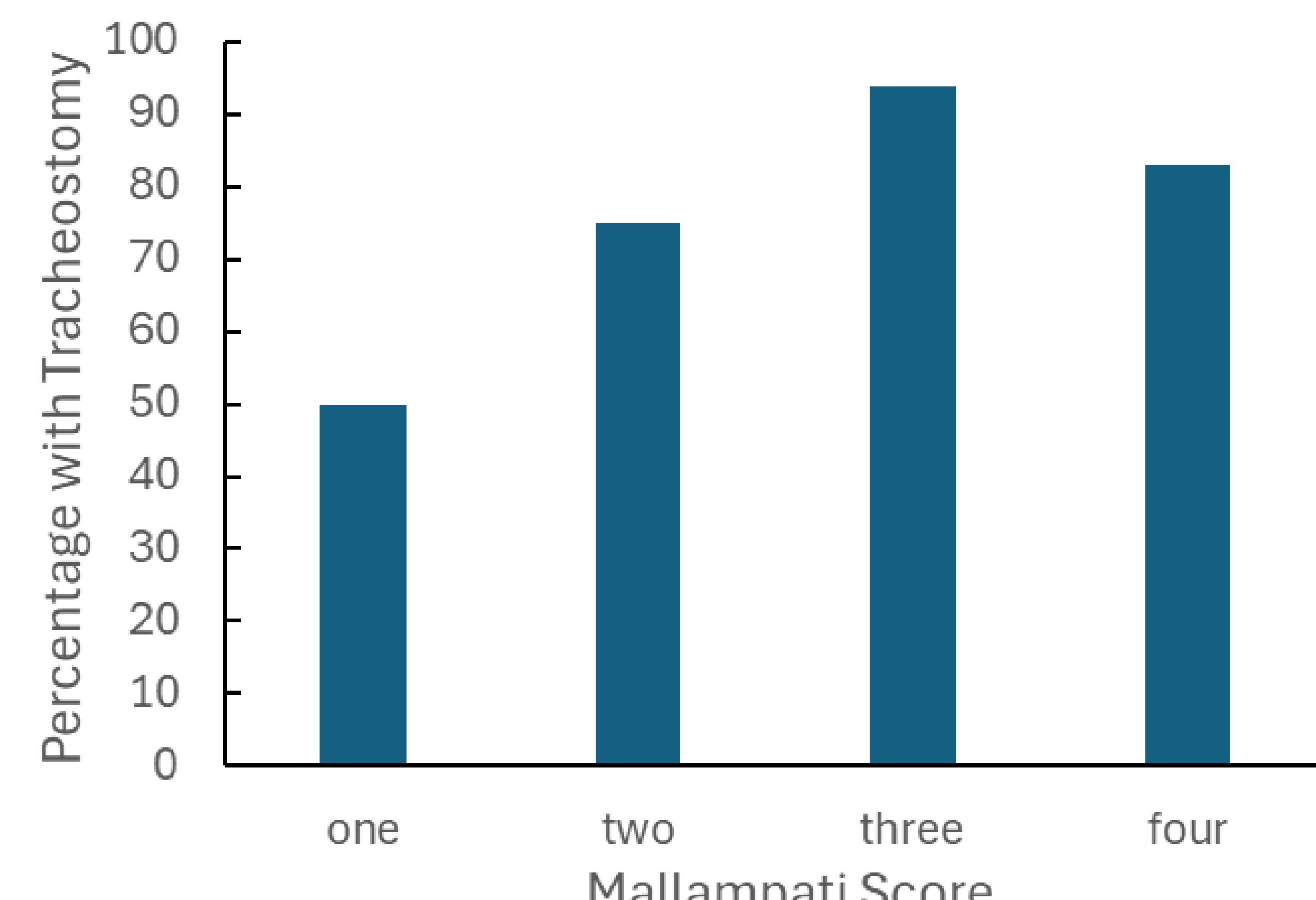

RESULTS

Table 1: Demographics and Characteristics of Participants

	# of Participants with Outcome (%)		
	Tracheostomy	No Tracheostomy	p-value
Male	57 (81)	11 (73)	0.487
Female	13 (19)	4 (27)	0.487
Caucasian	25 (36)	3 (20)	
Black	18 (26)	4 (27)	0.290
Hispanic	23 (33)	6 (40)	0.309
Asian	3 (4.3)	2 (13)	0.119
Other	1 (1.4)	0 (0.0)	0.993
Mean (SD)			
Age (years)	54.6 (10.7)	46.6 (15.3)	0.0710
BMI (kg/m ²)	25.1 (5.38)	24.8 (3.49)	0.779
Hospital Stay (Days)	14.2 (15.6)	8.73 (3.24)	0.00994

Table 2: Predictors of Tracheostomy

	# of Participants with Outcome (%)		
	Tracheostomy	No Tracheostomy	p-value
Cigarette Use	46 (66)	5 (33)	0.0218
Mandible Involvement	39 (56)	4 (27)	0.038375
Neck Dissection:			
Unilateral	34 (49)	3 (20)	0.000746
Bilateral	32 (45)	2 (13)	0.000851

Figure 1: Preoperative Mallampati score was positively associated with the percentage of tracheostomies being included in aerodigestive tract reconstruction surgery ($p = 0.0351$; 95% CI of 1.17-14.0).

Table 3: Complication Rates by Tracheostomy Status

	# of Participants with Outcome (%)		
	Tracheostomy	No Tracheostomy	p-value
Return to OR (30 days)	14 (20)	2 (13)	0.427
ED Visits (30 days)	28 (40)	2 (13)	0.0731
Pneumonia (30 days)	11 (16)	1 (6.7)	0.683
Flap Failure	5 (7.1)	0 (0)	0.580

Table 4: Tracheostomy Specific Complication Rates

	# of Participants with Outcome (%)		
	Tracheostomy	No Tracheostomy	p-value
Mucus Plugs		11 (16)	
Bleeding		7 (10)	
Premature Decannulation		5 (7.1)	
False Passage		2 (2.9)	
Delayed Tracheostomy		2 (12)	

DISCUSSION

- Prior cigarette use and Mallampati score may serve as predictors of tracheostomy
- Procedures involving neck dissection or mandibulectomy may be more likely to include tracheostomy
- Tracheostomy patients were more likely to present to the ED with marginal significance
- Tracheostomies introduce new potential complications
- Some predictors of tracheostomy may be confounded by disease severity
- Future directions include acquiring a larger sample size and studying TNM staging, and prior radiation therapy.

REFERENCES

- Clark JR, McCluskey SA, Hall F, et al. Predictors of morbidity following free flap reconstruction for cancer of the head and neck. *Head Neck.* 2007;29(12):1090-1101. doi:10.1002/hed.20639
- Isaac A, Zhang H, Varshney S, et al. Predictors of Failed and Delayed Decannulation after Head and Neck Surgery. *Otolaryngol Neck Surg.* 2016;155(3):437-442. doi:10.1177/0194599816643531
- Wang TT, Liang L, Lee CC. Does Elective Tracheostomy Reduce the Incidence of Airway Complications and Adverse Outcomes in Free Flap Reconstruction of Oral Cavity Malignancies? *J Craniofac Surg.* Published online August 1, 2025. doi:10.1097/SCS.00000000000011792
- Huang K, Przeslawski C, Ramirez CA. What Risk Factors Are Associated With Poorer Quality of Life in Patients With Head and Neck Cancer? *J Oral Maxillofac Surg.* 2023;81(5):648-653. doi:10.1016/j.joms.2022.11.016
- Janik S, Brkic FF, Gras I, Königswieser M, Franz P, Erović BM. Tracheostomy in bilateral neck dissection: Comparison of three tracheostomy scoring systems. *The Laryngoscope.* 2020;130(11). doi:10.1002/lary.28413