

Understanding Barriers to Timely Cochlear Implantation in the Pediatric Population

Emma Mazurek¹, Aimee Lee¹, Leslie Sarabia¹, Joanna Watkins MD^{1,2}, Evan Cumpston MD^{1,2}

¹Indiana University School of Medicine, Indianapolis, IN

²Indiana University School of Medicine, Department of Otolaryngology – Head and Neck Surgery

BACKGROUND

- Social determinants of health (SDH) may affect timely cochlear implantation (CI).
- Early detection of sensorineural hearing loss (SNHL) in children has dramatically increased since the advent of the universal newborn hearing screen.
- CI before 2 years old demonstrates favorable language and hearing outcomes.
- Early implementation is critical to leveraging brain plasticity for auditory development.

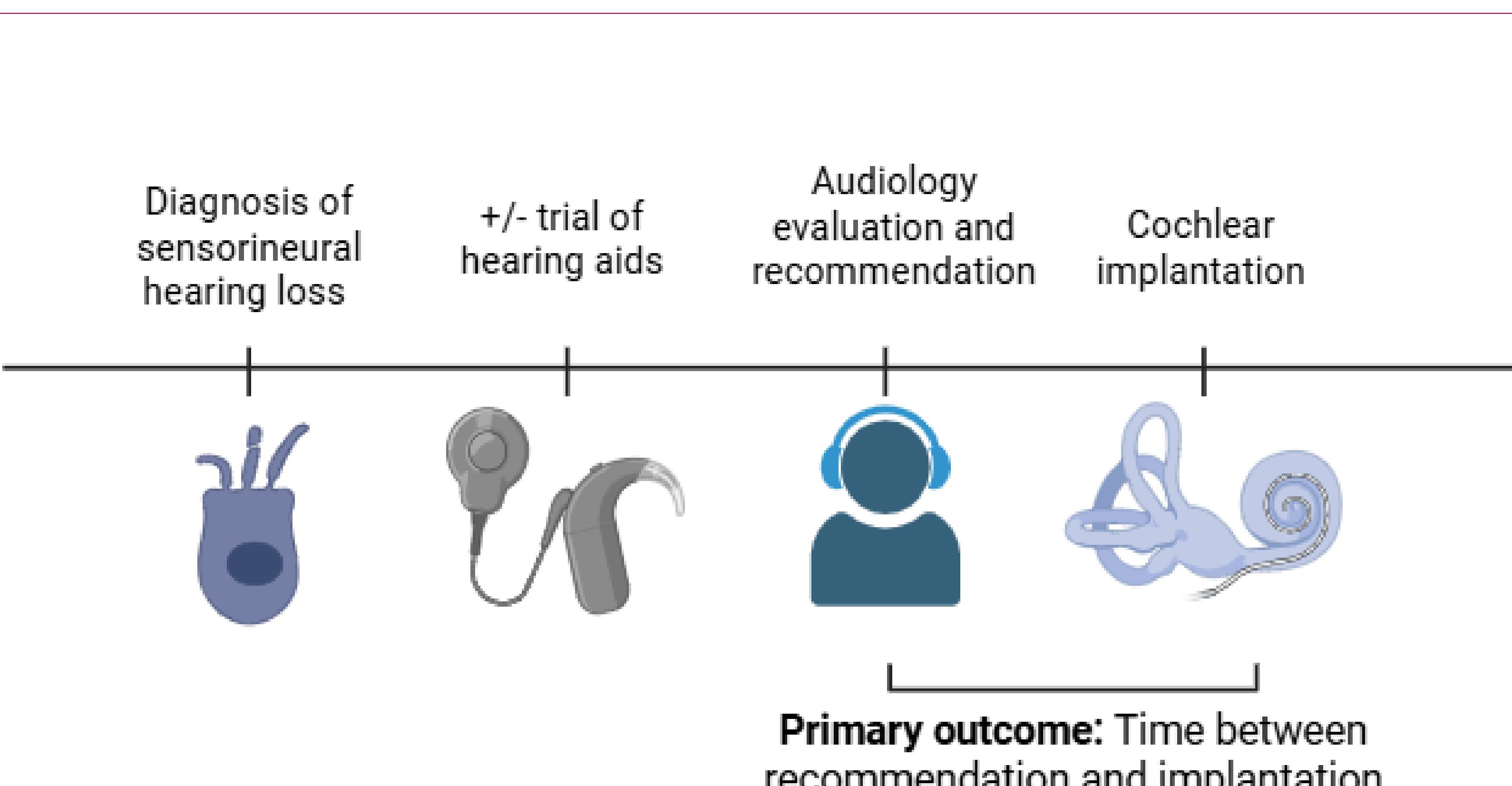


Figure 1. Process of SNHL Diagnosis to CI

METHODS

- Study Design: Observational retrospective cohort study at tertiary children's hospital
- Patient population: Ages 0-18 years undergoing cochlear implant (n = 97)
- Timeline: January 2015 to December 2020.
- Primary outcome: interval time from audiological qualification for CI to implantation
- Secondary outcomes: demographic information, distance from hospital, public vs. private insurance, language of primary caretaker

Table 1. Demographics

Age	2.78 yrs (IQR 1.28-5.73)	
Sex	Male	52 (55.3%)
	Female	42 (44.7%)
Race/Ethnicity		
	White	66 (70.2%)
	Black	12 (12.8%)
	Latinx	10 (10.6%)
	Asian	6 (6.4%)
Type of Insurance		
	Private	38 (40.4%)
	Public	56 (59.6%)
Language		
	English	83 (88.3%)
	ASL	7 (7.4%)
	Spanish	3 (3.2%)
	Burmese	1 (1.1%)
Distance to Hospital	60.4 mi (IQR 15.2-136)	

RESULTS

Chi Square Analysis: Percentage of Patients with Cochlear Implantation Before the Age of Two

Race	White patients	44	X ² = 1.95
	Non-white patients	40	(p = 0.16)
Language	English	39	X ² = 0.19
	Non-English	45	(p = 0.66)
Distance to Hospital	<60 miles	34	X ² = 0.79
	>60 miles	44	(p = 0.37)
Insurance	Public	41	X ² = 0.17
	Private	37	(p = 0.68)

Student's T-test: Average Time (in months) from Audiologic Qualification to Cochlear Implantation

Language	English	4.45	P < 0.05
	Non-English	2.74	
	ASL	3.41	
	Non-ASL	4.28	P = 0.32
Distance to hospital	<60 miles	3.33	
	>60 miles	5.04	P = 0.12
Insurance	Public	4.89	
	Private	3.11	P = 0.07
Race	White	4.01	
	Non-White	4.57	P = 0.62

CONCLUSIONS

- Children with non-English speaking parents experienced statistically significant less time between CI recommendation and CI.
- Patients with parents who used American Sign Language (ASL) experienced less time between recommendation and CI compared to non-ASL-speaking parents.
- Race, insurance status, and distance to hospital showed a trend towards significance, suggesting they may affect the timing between CI candidacy and implantation
- Future studies capturing a larger sample size may further elucidate these results.

REFERENCES

1. Center for Disease Control and Prevention. Data on Hearing Loss in Children. Accessed November 7, 2024. <https://www.cdc.gov/ncbddd/hearingloss/2022-data/01-data-summary.html>
2. Fujiwara RJT, Ishiyama G, Ishiyama A. Association of Socioeconomic Characteristics With Receipt of Pediatric Cochlear Implants in California. JAMA Netw Open. 2022 Jan 4;5(1):e2143132.
3. Sharma SD, Cushing SL, Papsin BC, Gordon KA. Hearing and speech benefits of cochlear implantation in children: A review of the literature. Int J Pediatr Otorhinolaryngol. 2020 Jun;133:109984.
4. DeVries J, Ren Y, Purdy J, Carvalho D, Kari E. Exploring Factors Responsible for Delay in Pediatric Cochlear Implantation. Otol Neurotol. 2021 Dec 1;42(10):e1478-e1485.
5. Moura JE, Martins JH, Alves M, Oliveira G, Ramos D, Alves H, Caiado R, Teixeira A, Silva LF, Migueis J. Children then, adults now: long-term outcomes-performance at 15, 20, and 25 years of cochlear implant use. Front Rehabil Sci. 2023 Dec 14;4:1275808.
6. Mehra S, Eavey RD, Keamy DG, Jr. The epidemiology of hearing impairment in the United States: newborns, children, and adolescents. Otolaryngol Head Neck Surg. 2009;140(4):461-72.
7. Schuh M, Bush ML. Defining Disparities in Cochlear Implantation through the Social Determinants of Health. Semin Hear. 2021;42(4):321-30.
8. Liao, E.N., Yaramala, N., Coulthurst, S., Merrill, K., Ho, M., Kramer, K. and Chan, D.K. (2023), Impact of Sociodemographic Disparities on Language Outcomes After Cochlear Implantation in a Diverse Pediatric Cohort. Otolaryngol Head Neck Surg, 168: 1185-1196.