

Cochlear Implantation in Siblings with ANSD

A Case Series and Review of the Literature

McClintock, KL¹; White, J²; Kastetter, S²; Gills, S²; Ryan, A³; Coelho, DH¹¹ VCU School of Medicine, Dept of Otolaryngology, Richmond VA; ² VCU Health, Dept of Audiology, Richmond VA; ³ VCU Health, Dept of Speech Language Pathology, Richmond VA

Background

- Auditory neuropathy spectrum disorder (ANSD) is a hearing disorder characterized by absent or severely abnormal auditory brainstem responses (ABRs) and intact cochlear outer hair cell function
- Cochlear implantation (CI) has become the standard of care for patients with severe to profound hearing loss, however, its use in ANSD is considered controversial due to variable outcomes
- Here, we present a current review of the literature to evaluate the effect of CI on hearing sensitivity and speech perception among patients with syndromic and non-syndromic ANSD
- Additionally, we present a case series of three sets of siblings with non-syndromic ANSD who received CI and have long-term pure tone audiometry and speech perception scores available

Case Series

- Patient 1A:
 - Diagnosed with auditory neuropathy with mild SNHL and speech delay at 3-years-old
 - Right-sided Advanced Bionic CI at 9-years-old
 - Postoperatively, demonstrated good outcome, enjoyed implant, and hearing loss remained constant with slow progression
 - Contralateral left-sided Advanced Bionic CI at 14-years-old for severe SNHL
 - To date, demonstrates improved hearing thresholds by pure tone audiometry (PTA) at 15 years since first CI and improved speech perception with **AzBio scores of 98% and 100%** at 12 years since CI; still reports some difficulty understanding rapid speech in conversation
- Patient 1B (younger half-brother):
 - Diagnosed with auditory neuropathy with bilateral SNHL at 33-months
 - Left-sided Advanced Bionic CI at 3-years-old
 - Postoperatively, demonstrated good outcome
 - Contralateral left-sided Advanced Bionics CI at 6-years-old
 - To date, demonstrates improved hearing thresholds by PTA at 15 years since first CI and continues to use ASL alongside speech for communication and follows an IEP in high school
- Patient 2A:
 - Diagnosed with auditory neuropathy with bilateral SNHL at 33-months-old
 - Left-sided Advanced Bionic CI at 3-years-old and right-sided HA
 - Decline in right-ear hearing thresholds from moderate to the severe-to-profound range, with minimal benefit provided by his HA at 7-years-old; elected to continue with right-sided HA
 - To date, demonstrates improved hearing thresholds by PTA at 9 years since CI, but continues to receive speech services and use ASL, with **HINT scores demonstrating 83% accuracy in the left-ear**
- Patient 2B (younger sister):
 - Diagnosed with bilateral auditory neuropathy at 2-months-old
 - OtoSCOPE genetic hearing loss testing revealed **homozygous MYO15A mutations**
 - Left-sided Advanced Bionic CI at 3-years-old
 - To date, demonstrates improved hearing thresholds by PTA at 6 years since CI, and continues to receive speech services and use ASL, with **HINT scores demonstrating 95% accuracy in the left-ear**
- Patient 2C (youngest sister):
 - Diagnosed with bilateral auditory neuropathy at 2-months-old
 - Left-sided Advanced Bionic CI at 2-years-old
 - To date, demonstrates improved hearing thresholds by PTA at 3 years since CI, and continues to receive speech services, primarily uses ASL, has demonstrated decreased **IT-MAIS scores of 4/40 from 13/40 preoperatively**; continues to exhibit decreased language comprehension and expression on the Rossetti Infant-Toddler Language Scale

Results

Fig 1. Effect of CI on Pure Tone Averages in Syndromic & Non-Syndromic ANSD

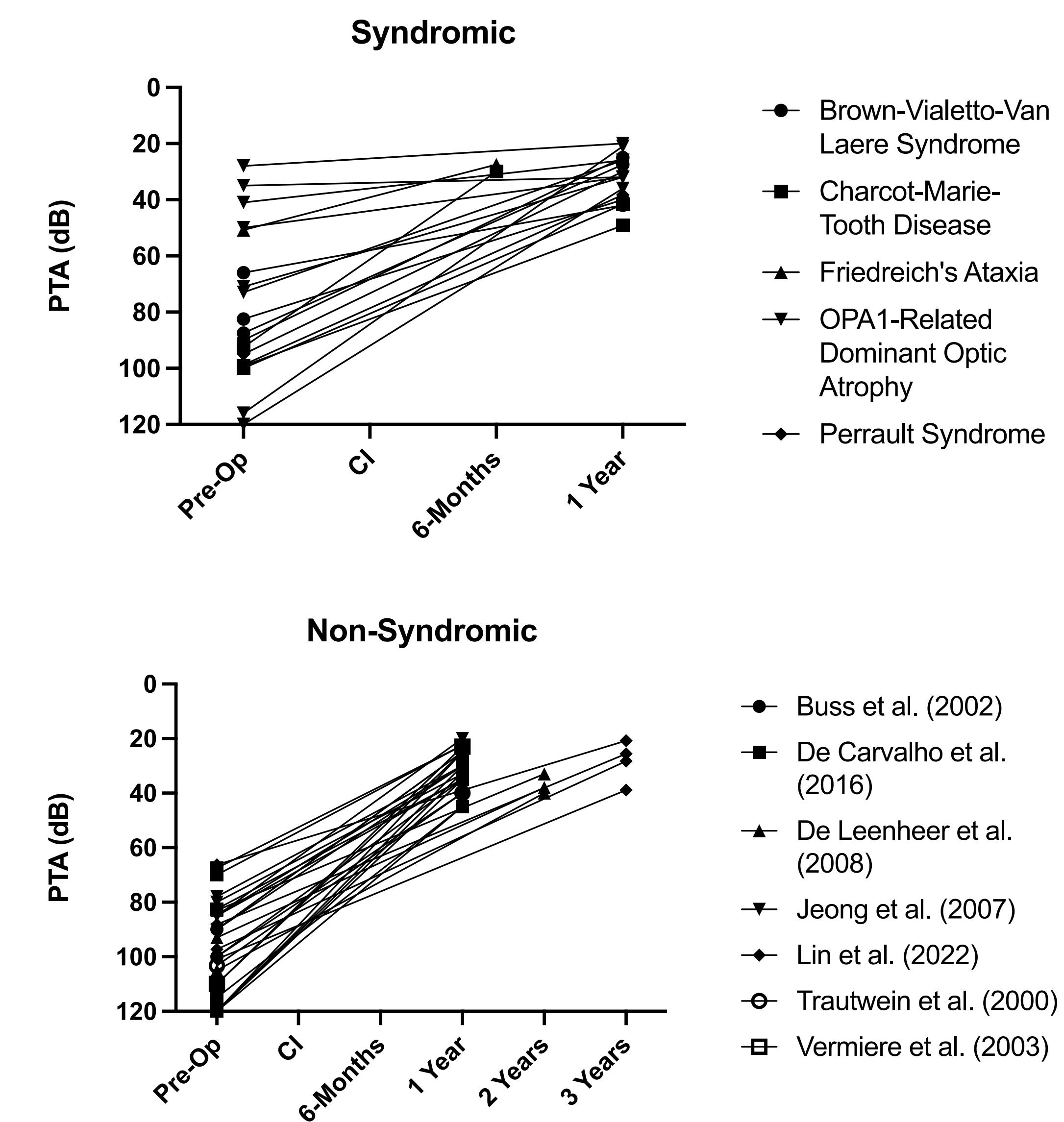


Fig 2. Effect of CI on Speech Perception in Syndromic & Non-Syndromic ANSD

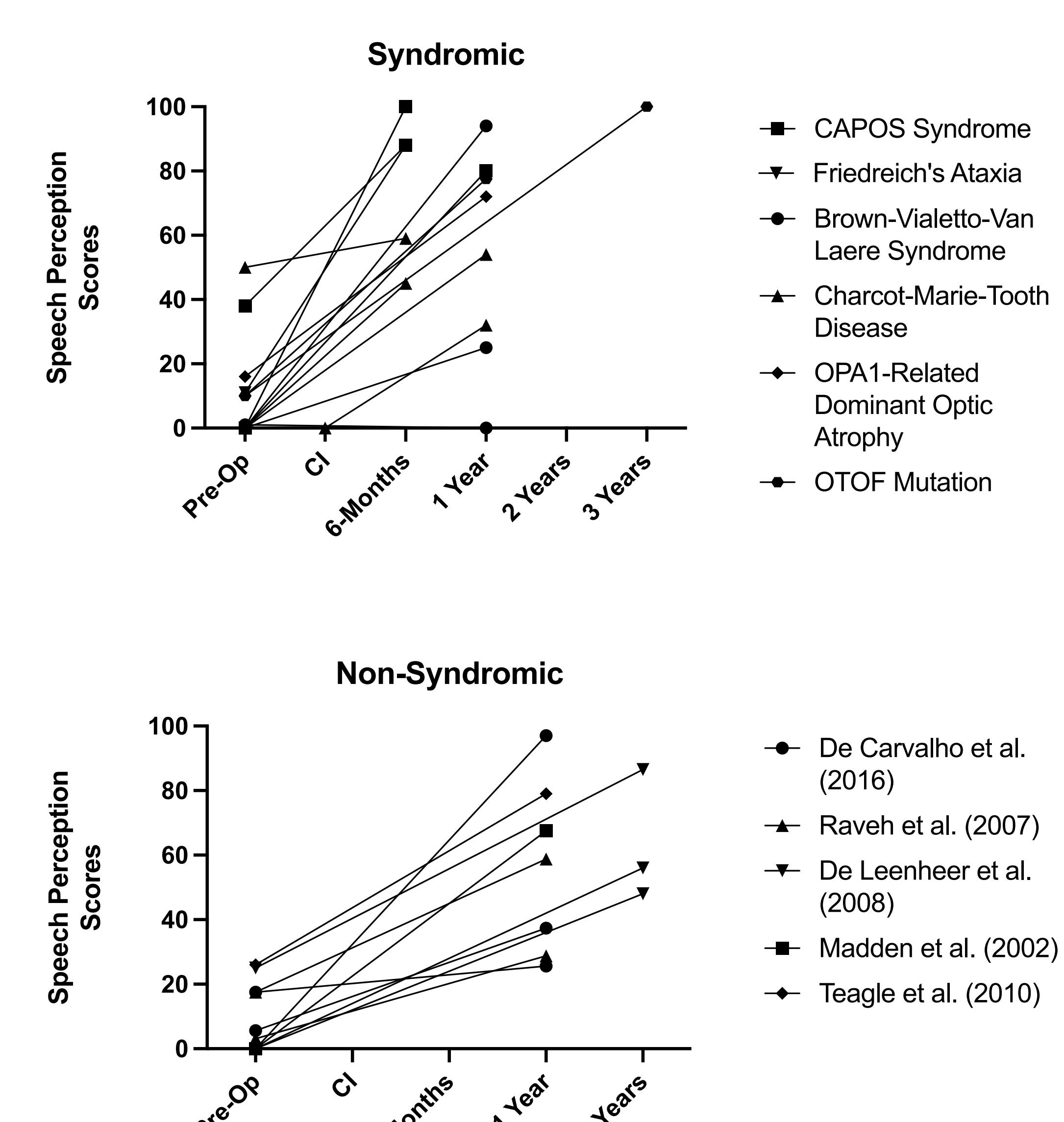
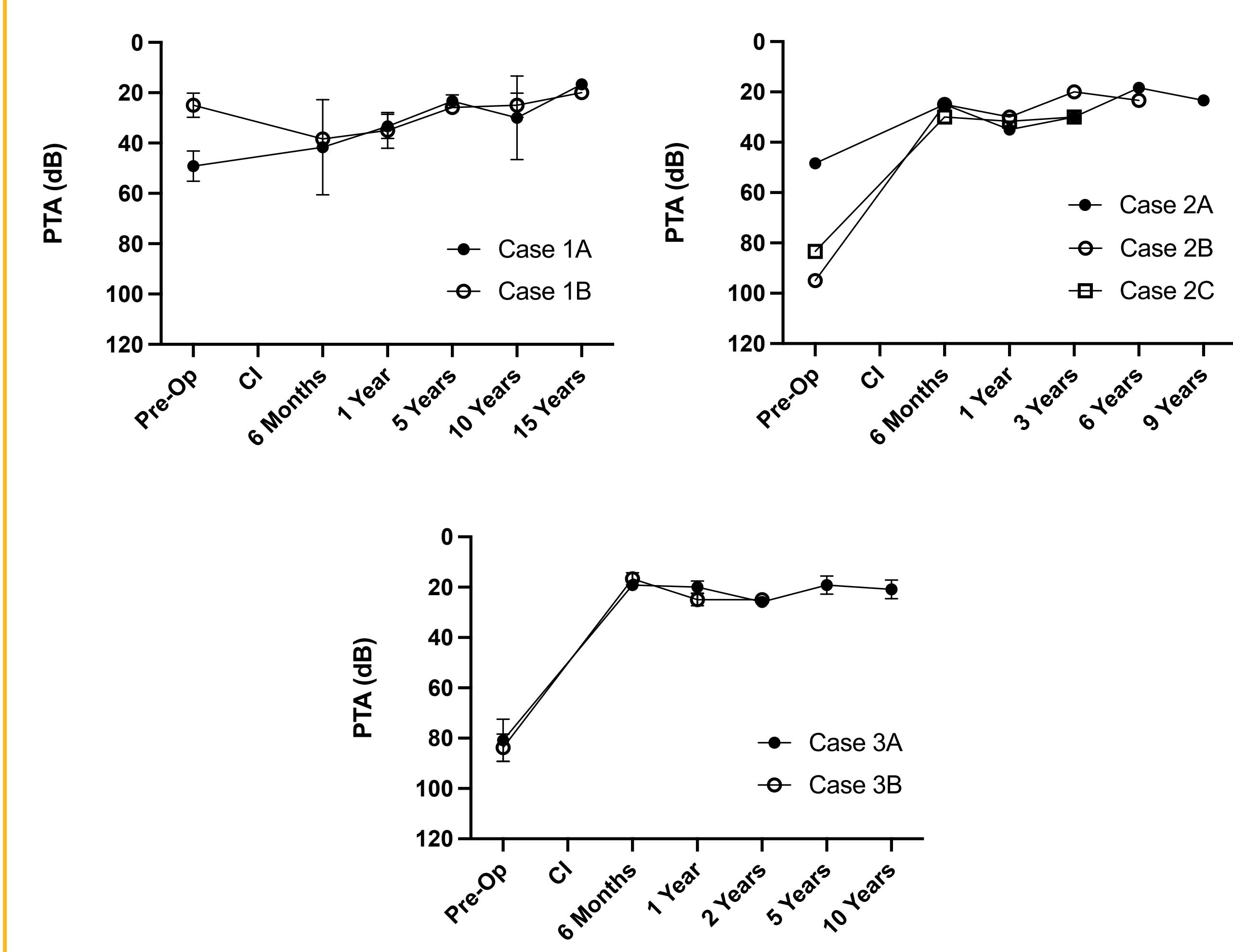



Fig 3. Effect of CI on Pure Tone Averages in Siblings with ANSD

Case Series (cont.)

- Patient 3A:
 - Diagnosed with bilateral auditory neuropathy at 5-months-old
 - OtoGenome Hearing Loss genetic testing demonstrated **heterozygous variants in GJB2, DFN31, DIAPH1, EYA4, and MYO1A**
 - Bilateral Cochlear Cls at 12-months-old
 - To date, demonstrates improved hearing thresholds by PTA at 10 years since CI and continues to receive speech services but endorses good performance in school and achieved **HINT and AzBio scores with 91% and 94% accuracy, respectively**
- Patient 3B (younger sister):
 - Diagnosed with bilateral auditory neuropathy at 2-months-old
 - Bilateral Cochlear Cls at 11-months-old
 - To date, follow up audiometry demonstrates improved hearing thresholds by PTA at 2 years since CI with **84% accuracy in speech perception on the NU-CHIPS test**; formal speech and language evaluation continues to indicate delayed auditory skills, language expression and comprehension, and speech development

Discussion

- Our current review of the literature demonstrates that although outcomes may vary for CI in ANSD, all patients with either syndromic or non-syndromic ANSD demonstrated improvement in hearing sensitivity and speech perception following CI
- Similarly, our case series of three sets of siblings with ANSD demonstrates that CI improves hearing thresholds with long-term improvement in various speech performance measures
- Future investigation should explore the implementation of standardized language assessments to evaluate the long-term effects of CI in ANSD

References

- Anderson, P., Schaefer, S., Henderson, L. & Bruce, I. A. Cochlear implantation in children with auditory neuropathy: Lessons from Brown-Vialetto-Van Laere syndrome. *Cochlear Implants Int. Interdiscip.* J. 20, 31–38 (2019).
- Anzalone, C. L., Nuhanovic, S., Olund, A. P. & Carlson, M. L. Cochlear Implantation in Charcot-Marie-Tooth Disease: Case Report and Review of the Literature. *Case Rep. Med.* 2018, e1760978 (2018).
- Altigan, A., Yuksel, M. & Ciprut, A. Cochlear Implantation in a Case of Auditory Neuropathy Spectrum Disorder with CAPOS Syndrome. *Meden. M. J.* 34, 318–323 (2019).
- Buss, E. et al. Outcome of cochlear implantation in pediatric auditory neuropathy. *Otol. Neurotol.* Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol.
- De Carvalho, G. M., Ramos, P., Arthur, C., Guimaraes, A. & Sartorato, E. Performance of Cochlear Implants in Pediatric Patients with Auditory Neuropathy Spectrum Disorder. *J. Int. Adv. Otol.* 12, 8–15 (2016).
- De Leenheer, E. M. R., Dhooge, I. J. M., Veulriet, E., Lina-Granade, G. & Truy, E. Cochlear implantation in 3 adults with auditory neuropathy/auditory dys-synchrony. *B-ENT* 4, 183–191 (2008).
- Forli, F. et al. A Rare Case of Perrault Syndrome with Auditory Neuropathy Spectrum Disorder: Cochlear Implantation Treatment and Literature Review. *Audiol. Res.* 11, 609–617 (2021).
- Frewin, B., Chung, M. & Donnelly, N. Bilateral cochlear implantation in Friedreich's ataxia: A case study. *Cochlear Implants Int. Interdiscip.* J. 14, 287–290 (2013).
- Goswami, J., Bruce, I. A., Green, K. M. J. & O'Driscoll, M. P. Cochlear implantation in a patient with sensori-neural deafness secondary to Charcot-Marie-Tooth disease. *Cochlear Implants Int. Interdiscip.* J. 13, 184–187 (2012).
- Han, K.-H. et al. ATP1A3 mutations can cause progressive auditory neuropathy: a new gene of auditory synaptopathy. *Sci. Rep.* 7, 16504 (2017).
- Jeong, S.-W., Kim, L.-S., Kim, B.-Y. & Kim, J.-R. Cochlear implantation in children with auditory neuropathy: outcomes and rationale. *Acta Oto-Laryngol. Suppl.* 36–43 (2007) doi:10.1080/03655230701624848.
- Kobayashi, M. et al. Cochlear implantation in patient with Charcot-Marie-Tooth disease. *Auris. Nasus. Larynx* 48, 327–330 (2021).
- Madden, C., Hilbert, L., Rutter, M., Greinwald, J. & Choo, D. Pediatric Cochlear Implantation in Auditory Neuropathy. *Otol. Neurotol.* 23, 163 (2002).
- Menezes, M. P. et al. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFTV2 deficiency. *Dev. Med. Child Neurol.* 58, 848–854 (2016).
- Postelmann, J. T. F. & Stokroos, R. J. Cochlear implantation in a patient with deafness induced by Charcot-Marie-Tooth disease (hereditary motor and sensory neuropathies). *J. Laryngol. Otol.* 120, 508–510 (2006).
- Raveh, E., Buller, N., Badrana, O. & Attias, J. Auditory neuropathy: clinical characteristics and therapeutic approach. *Am. J. Otolaryngol.* 28, 302–308 (2007).
- Rouillon, I. et al. Results of cochlear implantation in two children with mutations in the OTOF gene. *Int. J. Pediatr. Otorhinolaryngol.* 70, 689–696 (2006).
- Santarelli, R., Scimemi, P., Dal Monte, E., Genovese, E. & Arslan, E. Auditory neuropathy in systemic sclerosis: a speech perception and evoked potential study before and after cochlear implantation. *Eur. Arch. Oto-Rhino-Laryngol.* Off. J. Eur. Fed. Oto-Rhino-Laryngol. Soc. EUFOS Affil. Ger. Soc. Oto-Rhino-Laryngol. Head Neck Surg.
- Santarelli, R. et al. OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. *Brain* 138, 563–576 (2015).
- Sinnathuray, A. R., Watson, D. R., Frushstorfer, B., Olarte, J. R. & Toner, J. G. Cochlear Implantation in Brown-Vialetto-Van Laere syndrome. *J. Laryngol. Otol.* 125, 314–317 (2011).
- Teagle, H. F. B. et al. Cochlear implantation in children with auditory neuropathy spectrum disorder. *Ear Hear.* 31, 325–335 (2010).
- Trutwein PG, Sininger YS, & Nelson R. Cochlear implantation of auditory neuropathy. *J. Am. Acad. Audiol.* 11, 309–315 (2000).
- Vermiere, C., Broek, J. P. L., Van de Heyning, P. H., Cochet, E. & Carpenter, H. Bilateral cochlear implantation in children. *Int. J. Pediatr. Otorhinolaryngol.* 67, 67–70 (2003).