

Trends in Pediatric Sleep Surgery

Ellen Picollo MD¹, Gaayathri Varavenkataraman MA¹, Paula Valeria Guerra-Navarro BS², Chinelo Eruchalu BS², Michele M. Carr DDS MD PhD¹

¹Department of Otolaryngology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo

²Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo

Introduction

- There are a variety of surgical procedures available for the treatment of pediatric obstructive sleep apnea (OSA)
- Surgery is dependent on patient history and site of airway collapse
- Prior studies have shown increases in procedures such as lingual tonsillectomy (LT) and supraglottoplasty (SGP) through the 1990s and 2000s
- We sought to further study these trends through the 2020s compared to tonsillectomy and adenoidectomy (T&A)

Methods

- A retrospective review was performed using the TriNetX database
- Patients aged 12 years or younger diagnosed with OSA between 2010 and 2024 using ICD-10 code G47.33
- T&A was identified using CPT code 1007178 and SNOMED Code 28913000
- LT was identified using CPT code 42870 and SNOMED code 47823003
- SGP was identified using CPT codes 31540, 31541, 31560, 31561 and 31599

Results

	All OSA Patients	T&A	LT	SGP	T&A vs LT p-value	T&A vs SGP p-value
Total Number of Patients	301,866	104,225	999	2,937		
Age at Time of Surgery, years (mean \pm SD)		5.52 \pm 2.83	7.37 \pm 2.94	3.39 \pm 3.32	<0.01*	<0.01*
Sex, n (%)					<0.01**	<0.01**
Male	172,739 (57.2)	58,019 (55.7)	628 (62.9)	1,791 (61.0)		
Female	128,100 (42.4)	45,887 (44.0)	370 (37.0)	1,144 (39.0)		

Table 1. Demographics of study population including age and sex.

* indicates p-value calculated using Turkey's HSD Post Hoc Test

** indicates p-value calculated by Chi Square Test

Comorbidity	T&A n (%)	LT n (%)	SGP n (%)	T&A vs LT p-value	T&A vs SGP p-value
Heart disease	6,312 (6.1)	299 (29.9)	812 (27.6)	<0.01	<0.01
Lung disease	1,416 (1.4)	32 (3.2)	346 (11.8)	<0.01	<0.01
Neurological disease	3,210 (3.1)	119 (11.9)	529 (18.0)	<0.01	<0.01
Trisomy 21	3,047 (2.9)	224 (22.4)	367 (12.5)	<0.01	<0.01
Genetic syndrome	1,562 (1.5)	64 (6.4)	295 (10.0)	<0.01	<0.01
Laryngomalacia	2,782 (2.7)	295 (29.5)	1,852 (63.2)	<0.01	<0.01

Table 2. Comorbidities between surgical groups. P- values calculated using the Chi Square Test

Incidence Rate of Pediatric Sleep Surgery

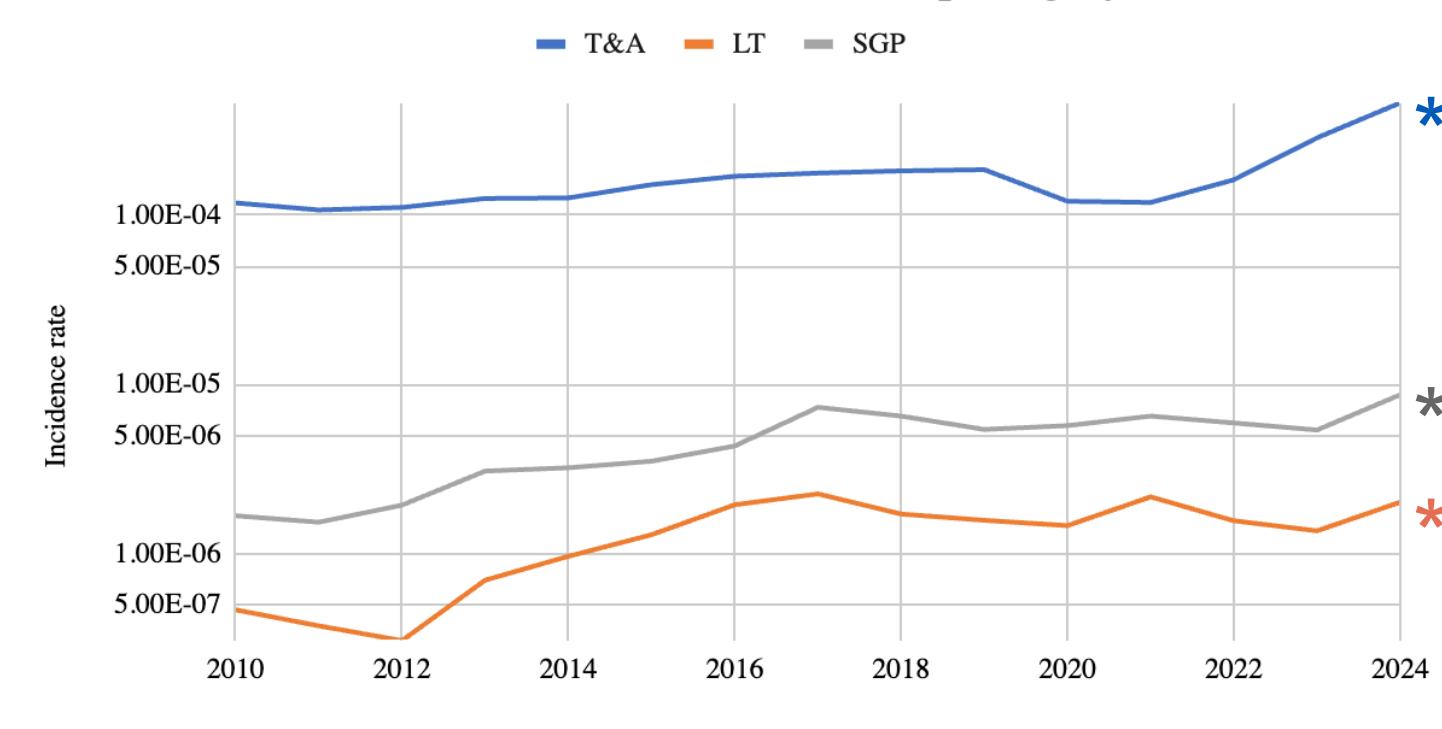
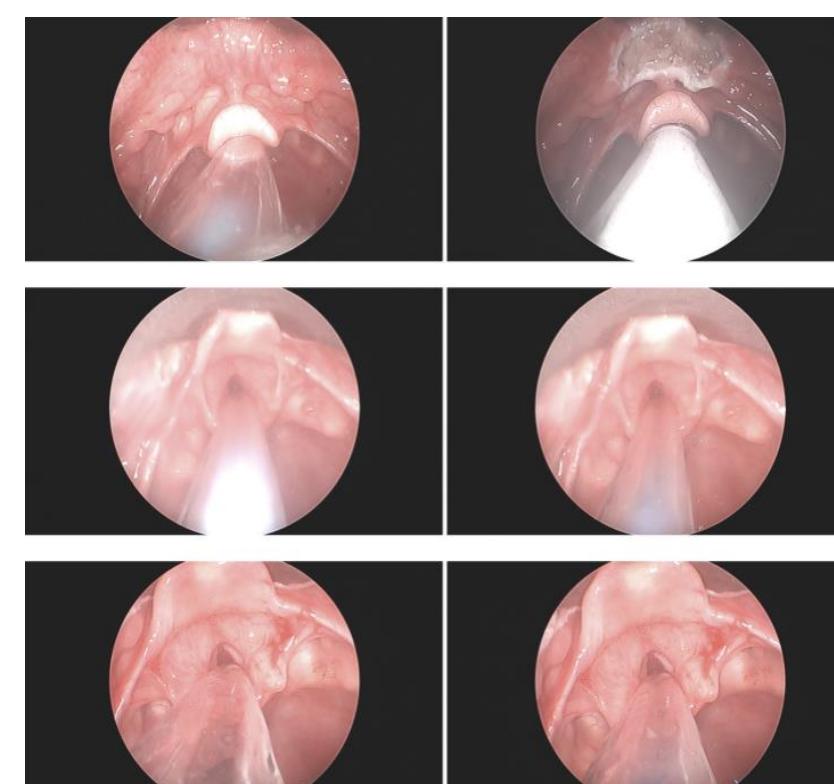



Figure 1. Increase in incidence of procedures from 2010-2024.

* Indicates p-value calculated using the Fisher test <0.01

Conclusion

- LT and SGP have an increased role in management of pediatric OSA
- "Sleep nasoendoscopy" described in 1990s
- "Drug induced sleep endoscopy" described in pediatric patients in 2000 by Myatt and Beckenham
- Reflects a shift to more comprehensive and anatomy specific sleep surgery in pediatric otolaryngology.

References

Smith DF, Sa T, Fenchel M, Cohen AP, Heubi C, Shott SR, Gourin CG, Ishman SL. Temporal trends in inpatient pediatric sleep apnea surgery: 1993-2010. *Laryngoscope*. 2017 May;127(5):1235-1241. doi: 10.1002/lary.26304. Epub 2016 Sep 19.

Wilcox LJ, Bergeron M, Reghunathan S, Ishman SL. An updated review of pediatric drug-induced sleep endoscopy. *Laryngoscope Investig Otolaryngol*. 2017 Nov 2;2(6):423-431. doi: 10.1002/lio2.118.

Durr ML, Meyer AK, Kezirian EJ, Rosbe KW. Drug-induced sleep endoscopy in persistent pediatric sleep-disordered breathing after adenotonsillectomy. *Arch Otolaryngol Head Neck Surg*. 2012 Jul;138(7):638-43. doi: 10.1001/archoto.2012.1067.

Table 3. Numerical percent increase in incidence of procedures from 2011-2024. P- value calculated using the Fisher test.