
Introduction 
Salivary gland tumors (SGTs) are one type of the head and neck tumors, with an annual incidence ranging from 

2.5 to 8.6 cases per 100,000 individuals1,2. Although malignant SGTs constitute less than 20 % of these cases, 

they require more intensive treatment than benign SGTs, underscoring the need for comprehensive treatment 

planning. Current pre-operative assessments include imaging and cytopathological examinations, with ultrasound 

serving as the primary imaging tool for evaluating SGTs. Ultrasound offers high-resolution, radiation-free, and 

rapid imaging for superficial tissues such as the salivary glands, and it facilitates the simultaneous acquisition of 

fine-needle aspiration cytology (FNAC). However, current diagnosis of SGTs relies on subjective features 

observed in ultrasound imaging. In our previous study, we constructed a subjective ultrasound score for 

evaluating SGTs3. We further compared this score with ultrasound elastograpy and FNAC. The results indicated 

that in differentiating between malignant and benign SGTs, the subjective ultrasound score had a sensitivity of 

58%, specificity of 89%, and accuracy of 85%, while ultrasound elastography had a sensitivity of 69%, specificity 

of 70%, and accuracy of 70%, and FNAC had a sensitivity of 74%, specificity of 93%, and accuracy of 91%4. 

Despite the high accuracy, all methods suffered from low sensitivity, even with cytology. Furthermore, diagnoses 

based on subjective ultrasound imaging may vary among different specialists. Consequently, we have shifted our 

research focus to the application of deep learning (DL) to establish an objective and automated diagnostic 

method. 

DL techniques are increasingly being applied to medical image analysis, including tasks such as classification, 

detection, and segmentation5,6. In our previous study, we developed a DL model using a modified ResNet50V2 

architecture for classifying SGTs under ultrasound image, and this model achieved high diagnostic performance 

on the testing set7. However, it relied on cropped ultrasound images restricted to the tumor region alone, 

necessitating an additional step for manual cropping and potentially introducing bias during clinical application. To 

address this limitation, we explored object detection models for automated tumor region cropping. Object 

detection not only identifies objects but also precisely localizes them by drawing bounding boxes around their 

boundaries8,9. Our approach combines object detection with our existing classification model, allowing us to 

achieve both automated tumor detection and subsequent classification. We considered both one-stage and two-

stage object detection models. For one-stage model, it directly predicts bounding boxes and class probabilities, 

making them faster than two-stage models. For two-stage model, it involves a region proposal step followed by 

classification and refinement. While it offers higher accuracy, it is more complex and time-consuming. For our 

implementation, we chose YOLOv8, the latest version of the YOLO (You Only Look Once) family, due to its 

smaller size and faster inference speed10,11. Additionally, we developed a user-friendly web application using 

Streamlit, which allows clinicians and researchers to easily interact with the model. 

In summary, our study aims to seamlessly integrate object detection and classification to automate SGT analysis 

in ultrasound images. By developing a web application, we hope to facilitate clinical and research use. 
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Methods 
Ethical Considerations 

The study was carried out at a tertiary medical center. We reviewed the records of patients who visited our 

outpatient department between January 2007 and December 2022 and underwent ultrasound examinations for 

SGT. The ultrasounds were performed by seasoned otolaryngologists using a Toshiba Aplio 500 (Canon Medical 

Systems, Tochigi-ken, Japan) equipped with a 5-14 MHz linear-array transducer. We included B-mode ultrasound 

images from adult patients who subsequently underwent excision or core needle biopsy (CNB), with pathological 

reports available. CNB was the chosen procedure for patients for whom open surgery was not suitable. 

Pathological diagnoses from these reports served as the definitive standard for classifying tumors as malignant or 

benign. Ultrasound images with poor quality were excluded. The process for inclusion and exclusion is depicted 

in Figure 1. 

Data Collection and Preparation 

The study protocol is illustrated in Figure 2. Ultrasound images were retrieved from the picture archiving and 

communication system (PACS), covering various views of SGTs. We preserved ultrasound images while ensuring 

all identifiable information was removed to protect patient confidentiality. This process involved the elimination of 

names, medical record numbers, birth dates, and dates of ultrasound execution. We achieved this by utilizing the 

Snipping Tool provided by Microsoft. For effective model establishment and evaluation, we categorized these 

ultrasound images into three sets. The training set, which includes 684 ultrasound images (475 benign and 212 

malignant) from patients diagnosed between January 2007 and December 2020, was utilized for model 

establishment. The validation set, comprising 78 ultrasound images (54 benign and 24 malignant) from patients 

diagnosed between January 2021 and December 2021, was employed for model validation. The testing set, 

containing 100 ultrasound images (82 benign and 18 malignant) from patients diagnosed between January 2022 

and December 2022, was used to assess the model’s predictive capabilities. During the object detection training 

process, we employed labelImg, a Python-based open-source image annotation tool, to delineate bounding 

boxes (Figure 3). Each bounding box was labeled as ‘tumor’. To facilitate integration with our classification model, 

we further assigned class labels: benignity as class 0 and malignancy as class 1. 

Model Establishment 

We developed our model utilizing the Python programming environment on Google Colaboratory (Colab) with an 

NVIDIA T4 GPU (NVIDIA Corp., Santa Clara, CA, USA). Colab provides complimentary GPU resources and 

functions as a web-based Jupyter Notebook. We use the YOLOv8 for the object detection training12. The input 

image undergoes resizing to a 128×128 dimension to facilitate the training process before being inputted into the 

CNN model. This model divides the input image into a grid structure, where each grid cell is tasked with detecting 

objects whose centers are located within its boundaries. The fully connected layers bridge the convolutional 

layers to YOLO's output layer, enabling the identification of target objects. In terms of bounding box prediction, 

YOLOv8 employs two loss functions: Distribution Focal Loss (DFL) and Complete Intersection over Union (CIoU) 

Loss. DFL, an augmented variant of Focal Loss, is designed to address class imbalance by adjusting sample 

weights based on class information. CIoU loss, an evolved form of Intersection over Union (IoU) loss, measuring 

the precision of object detectors by assessing the congruence between predicted bounding boxes and ground 

truth. We trained the model for 100 epochs using a training set to construct the detection model. The validation 

set was used to validate the precision of bounding box predictions 

Web Application Integration 

We connected the detection model with our previously trained classification model, and developed a web 

application using Streamlit. The operational code is stored in a GitHub repository, and the application is deployed 

under the Streamlit domain. When a user uploads an ultrasound image of a SGT, the application automatically 

detects the tumor, crops the relevant region, and classifies the benignity or malignancy of the SGT (Figure 3). 

This entire process can also be executed locally. 

Statistical Analysis 

We evaluated the diagnostic performance of our web application model using the testing set. A confusion matrix 

was generated, including metrics such as accuracy, sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV). 

Internal and External Validation 

Following the establishment and validation of our web application model, we proceeded to validate its diagnostic 

consistency using distinct patient groups. The internal validation set included 24 benign and 3 malignant 

ultrasound images. Each image was sourced from a patient diagnosed between January 2023 and June 2023 in 

our hospital. The external validation set comprised 36 benign and 21 malignant ultrasound images. Each image 

was sourced from a patient whose case was reported on an online case report website 

(https://www.ultrasoundcases.info). We obtained their permission to use these images for research purposes 

Discussion 
This study presents a compelling study that leverages the use of DL for the automated detection and classification of 

SGTs using ultrasound images. We had seamlessly integrated these DL models into a user-friendly web application, 

which simplifies the process for users by requiring the upload of a single ultrasound image of the SGT. For optimal 

results, we recommend using images of high resolution or those that appear more suspicious for malignancy. This 

application is designed for both local and online utilization. To safeguard patient privacy, we recommend removing all 

identifiable information from the ultrasound image before uploading. Our web application model was trained on a dataset 

of ultrasound images from patients with pathology-confirmed SGTs. The distinct cohorts for training, validation, and 

testing were employed to ensure a comprehensive evaluation of the model’s performance. Our model demonstrated an 

accuracy of 85%, a sensitivity of 78%, a specificity of 87%, a Positive Predictive Value (PPV) of 56%, and a Negative 

Predictive Value (NPV) of 95% in the testing set. Furthermore, we compiled two separate datasets for internal and 

external validation, where the model achieved an accuracy of 79%, a sensitivity of 76%, a specificity of 81%, a PPV of 

70%, and an NPV of 85% in the external validation set. The model’s high diagnostic performance in both internal and 

external validations underscores the potential of this method. To further enhance diagnostic consistency and accuracy, 

histogram equalization was utilized during the classification process to adjust for operator-controlled gray level variations. 

When compared to the subjective ultrasound score4, which exhibited a sensitivity of 58%, specificity of 89%, and 

accuracy of 85%, our web application model showed a notably higher sensitivity. It proved to be an effective diagnostic 

method for the automatic classification of benign and malignant SGTs, offering a balanced sensitivity and specificity, and 

mitigating the variability of interpretation when we evaluated under subjective ultrasound features. 

The user-friendly interface of our model promotes its application in both clinical and research settings. For deployment 

purposes, we have chosen to develop these DL models as a web application, facilitating ease of access and use. 

Currently, there are two python software development kits (SDKs), Gradio13 and Streamlit14, that can use to streamline 

the creation of web components directly through Python code. Both SDKs can be easily developed and executed on a 

local host. However, their approaches to online deployment diverge. The Python code crafted with Gradio is stored within 

Gradio’s infrastructure and is inherently public, posing a challenge for medical image analysis due to privacy 

considerations. Conversely, code developed with Streamlit is hosted on GitHub, allowing for private repositories, and the 

web application is deployed under the Streamlit domain. While deploying on the Streamlit domain may still raise 

concerns regarding patient confidentiality, clinicians and researchers have the option to anonymize the ultrasound 

images before uploading or to opt for local deployment of the model. 

In the realm of object detection, there are one-stage and two-stage object detection models. Although the two-stage 

object detection model are known for their superior accuracy, their slower processing speed limits its use in real-time 

object detection15. In our study, we employed the one-stage detection model, YOLOv8, for our detection training of SGT. 

It yielded impressive results in bounding box prediction for SGTs, achieving a precision of 0.939, recall of 0.945, and 

mAP50 of 0.958. The YOLOv8 algorithm has gained traction in medical image detection tasks, such as identifying brain 

tumor, breast cancer, and lung disease16. Its application also extends to cytology and pathology image detection, where it 

has demonstrated high precision and recall17. Notably, YOLOv8 supports multi-class prediction, making it suitable for 

both detection and classification tasks. However, our initial attempts to use YOLOv8 for both detection and classification 

yielded suboptimal results. Consequently, we adapted our approach, utilizing YOLOv8 exclusively for tumor detection 

and employed our previously trained DL model for classification. This strategic adjustment led to high precision and recall 

in object detection, and the coupled classification model demonstrated promising results, with commendable accuracies, 

sensitivities, and specificities in both internal and external validation sets. Although this modification may augment the 

model’s size, it significantly enhanced both detection and classification performance compared to using YOLOv8 alone. 

Limitations 

This study, while insightful, still presents several limitations that warrant discussion. Firstly, the retrospective design 

introduces potential selection bias, which may constrain the broader applicability of the findings. Secondly, the dataset 

utilized was relatively small in size, consisting of 862 ultrasound images of SGTs used for training, validation, and testing 

phases. Despite the implementation of distinct internal and external validation cohorts to assess the model’s diagnostic 

accuracy, the results derived from this specific dataset might not be generalizable to other demographic groups. Thirdly, 

the model’s detection and classification capabilities hinge on the gray-level intensity of ultrasound image. Although 

histogram equalization was employed to mitigate inconsistencies, inherent variations in ultrasound equipment and their 

respective settings could potentially alter the gray-level distribution, thereby influencing the predictive outcomes. Given 

these considerations, it is imperative to pursue additional research across multiple institutions to substantiate the model’s 

validity. Such studies would provide valuable insights into the model’s performance in actual clinical environments and its 

potential integration within existing diagnostic workflows. 

Results 
The flow chart of inclusion and exclusion criteria is presented in Figure 1. The study protocol is illustrated in 

Figure 2. There were total 862 ultrasound images of SGTs in our study, including 611 benign and 251 malignant 

ultrasound images. We split the dataset as 684, 78, and 100 ultrasound images in the training, validation, and 

testing set. Figure 4 showed the predicted result of validation set using YOLOv8 after fine tuning on our training 

set. During the validation process of objection detection, the precision and recall of bounding box was 0.939 and 

0.945, and mAP50 (mean average precision at IoU threshold of 0.5) was 0.958. 

After the objected detection model establish, we connected with the pre-trained classification model, and 

developed a web application. This web application model obtained an accuracy of 85%, a sensitivity of 78%, a 

specificity of 87%, a PPV of 56%, and a NPV of 95% in the testing set. 

Further internal and external validation was performed (Figure 5), and the web application model achieved an 

accuracy of 85%, a sensitivity of 100%, a specificity of 83%, a PPV of 60%, and a NPV of 93% in the internal 

validation set, and showed an accuracy of 79%, a sensitivity of 76%, a specificity of 81%, a PPV of 70%, and a 

NPV of 85% in the external validation set. 
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Figure 3. Bounding box annotation using 

labelImg 

Figure 2. The study protocol 

Figure 1. Flow chart to illustrate the study’s 

inclusion and exclusion criteria 

Figure 4. Web application interface 

Figure 5. The confusion matrix for the 

internal validation set (A) and the external 

validation set (B), utilizing the web 

application model. 


