

Introduction

Head and neck cancer represents a significant global health concern, with its prevalence and impact extending across diverse populations. The United States is known to have a large diverse patient population which includes patients with limited English proficiency (LEP). The Migration Policy Institute estimates that there are approximately 25 million residents with limited English proficiency.¹

It is well established that effective communication between healthcare providers and patients is crucial for optimal care outcomes. However, this poses a challenge for patients who have limited English proficiency (LEP).²⁻⁴ Linguistic barriers can impede the understanding of complex medical information, affect treatment adherence, and lead to suboptimal health outcomes.

Language proficiency is intricately linked to health literacy, a key determinant of patient engagement and adherence to medical recommendations.^{2-4,8} Head and neck cancers, often require complex treatment regimens and regular follow-ups, demanding a high level of health literacy for effective self-management. Limited English proficiency may lead to misunderstandings, missed appointments, and suboptimal medication adherence, potentially contributing to an increased risk of hospital readmissions and ED visits. Unlike certain other cancer types, head and neck cancers often necessitate specialized treatments that can directly impact communication abilities. Therefore, investigating readmission and ED visit rates among this patient population with limited English proficiency offers a nuanced understanding of the interplay between linguistic barriers and disease-specific factors.

Disparities in healthcare outcomes among patients with limited English proficiency are well-documented.^{1-4,7} Exploring the specific impact of limited English proficiency on readmission and ED visit rates in head and neck cancer patients provides an opportunity to identify potential areas for intervention. Understanding these disparities is critical for the development of targeted strategies to enhance communication, support patient education, and improve overall care coordination.^{2,3,5}

The outcomes of this research have the potential to inform healthcare policies, enhance clinical practice, and guide the development of tailored interventions aimed at mitigating the impact of limited English proficiency on health outcomes in head and neck cancer patients. By shedding light on the intricate relationship between language barriers and healthcare utilization patterns, this study contributes valuable insights that may ultimately improve the quality of care and outcomes for a population facing unique challenges in navigating their cancer journey.

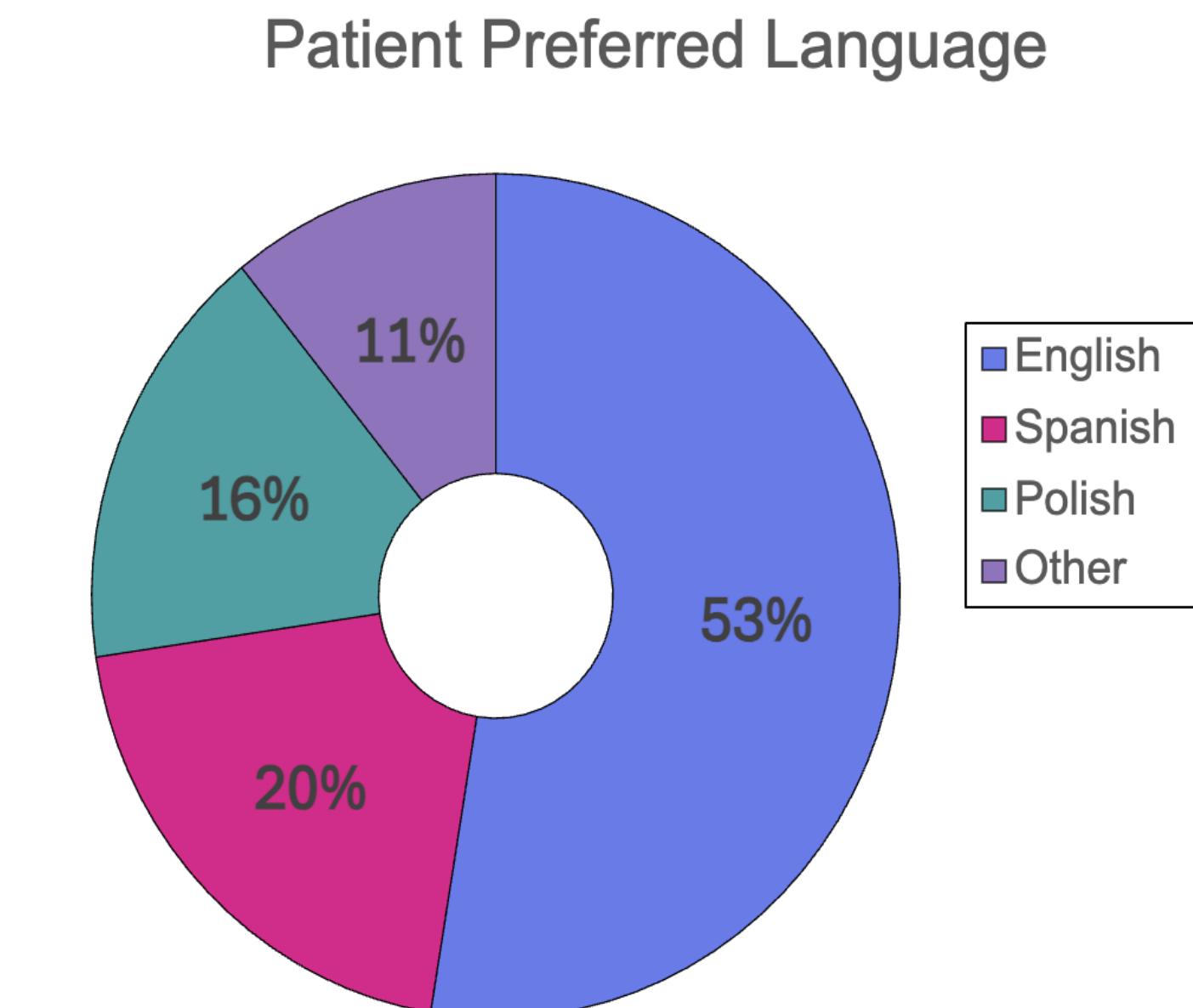
Objectives

- To investigate the relationship between Head & Neck cancer patients with limited English proficiency (LEP) and ED visits and readmission rates.
- To perform a multifactorial analysis and determine risk factors associated with readmission rates and ED visits.

Methods

This study is a retrospective chart review of adults diagnosed with Head and Neck Cancer who received treatment (surgical, medical, radiation) for their head and neck cancer at Loyola University Medical Center from 01/2012-12/2022. Patients were excluded if they had missing language proficiency data, had a history of prior head and neck cancer treatment, an active secondary malignancy, or received treatment for their head and neck cancer at another institution. Patients who were designated as LEP were then matched randomly to patients who were considered English proficient.

Summary statistics are reported to describe this sample of head and neck cancer patients. Frequencies and percentages are reported for categorical variables. Means and standard deviations are reported for quantitative variables. Univariable binary logistic regression models estimated the unadjusted effects of limited English proficiency and other predictors on the logits of ED visits and hospital readmissions at 30 days, 90 days, and 1 year post-treatment. Logistic regression models featured a logit link and a binary distribution. Odds ratio estimates are reported with corresponding Wald 95% confidence intervals and Chi square p-values. Type 3 Wald Chi square p-values are reported for the omnibus effects of polytomous predictors. Statistical analyses were conducted using SAS Version 9.4 (Cary, NC).


Results

There was a total of 204 total patients included in the study, 102 with LEP and 102 that were English proficient. The majority of patients were male (n=142, 69.61%). The average patient age was 64 years. Patients most identified as White (67.65%), followed by Multiracial (22.55%), African American (4.90%), and Asian (3.92%). The three most common non-English primary languages spoken were Spanish (38.23%), Polish (31.37%), and Gujarati (7.84%).

Table 1. Demographic Data

Variable	Average
Age (years)	64.50 (12.76)
Sex	n(%)
Female	62 (30.39)
Male	142 (69.61)
Race	
Multiracial/Other	46 (22.55)
Asian	8 (3.92)
Black/African American	10 (4.90)
White	138 (67.65)
Ethnicity	
Hispanic/Latino/a	42 (20.59)
Non-Hispanic/Latino/a	161 (78.92)
Current Smoker at Time of Cancer Diagnosis	53 (25.98)
Limited English Proficiency	102 (50.00)
Interpreter Present/Provider Speaks Language	50 (24.51)
ED Visit at 30 Days Post-Treatment	22 (10.78)
ED Visit at 90 Days Post-Treatment	7 (3.43)
ED Visit at 1 Year Post-Treatment	16 (7.84)
Readmission at 30 Days Post-Treatment	27 (13.24)
Readmission at 90 Days Post-Treatment	14 (6.86)
Readmission at 1 Year Post-Treatment	20 (9.80)

Figure 1. Distribution of patient preferred language at Loyola University Medical Center

Table 2. Unadjusted Effects of LEP & Other Predictors on Post-Treatment ED Visits

	ED Visit at 30 Days			ED Visit at 90 Days			ED Visit at 1 Year		
	n	OR (95% CI)	p	n	OR (95% CI)	p	n	OR (95% CI)	p
Age (years)	203	0.96 (0.81, 1.14)	0.67	204	0.93 (0.71, 1.23)	0.62	204	1.03 (0.84, 1.26)	0.79
Sex	203	0.47 (0.15, 1.46)	0.19	204	-	-	204	1.41 (0.49, 4.08)	0.52
Ethnicity	202	0.83 (0.27, 2.60)	0.75	203	1.56 (0.29, 8.34)	0.60	203	0.88 (0.24, 3.23)	0.84
Current Smoker	199	1.04 (0.38, 2.81)	0.94	200	1.11 (0.21, 5.92)	0.90	200	3.09 (1.10, 8.71)	0.03*
Limited English Proficiency	203	0.42 (0.16, 1.09)	0.07	204	0.74 (0.16, 3.40)	0.70	204	0.31 (0.10, 0.98)	0.05*
Interpreter Present/Provider Speaks Language	202	0.65 (0.21, 2.01)	0.45	203	1.23 (0.23, 5.56)	0.81	203	1.02 (0.31, 3.32)	0.97
Surgery	203	1.19 (0.42, 3.41)	0.74	204	0.85 (0.16, 4.52)	0.85	204	0.54 (0.19, 1.57)	0.26
Adjuvant	203	1.86 (0.76, 4.53)	0.17	204	1.95 (0.42, 8.95)	0.39	204	1.12 (0.40, 3.14)	0.83
Radiation	202	1.70 (0.63, 4.54)	0.29	203	-	-	203	-	-
Systemic Therapy	203	1.60 (0.65, 3.91)	0.30	204	-	-	204	4.58 (1.52, 13.76)	0.01*

Table 3. Unadjusted Effects of LEP & Other Predictors on Post-Treatment ED Visits

	Readmission at 30 Days			Readmission at 90 Days			Readmission at 1 Year		
	n	OR (95% CI)	p	n	OR (95% CI)	p	n	OR (95% CI)	p
Age (years)	203	1.05 (0.89, 1.23)	0.59	204	1.04 (0.84, 1.30)	0.70	204	0.99 (0.83, 1.19)	0.91
Sex	203	0.47 (0.17, 1.32)	0.15	204	1.30 (0.42, 4.04)	0.65	204	1.26 (0.48, 3.34)	0.64
Ethnicity	202	1.45 (0.57, 3.71)	0.44	203	1.05 (0.28, 3.94)	0.94	203	0.40 (0.09, 1.78)	0.23
Current Smoker	199	1.45 (0.61, 3.47)	0.40	200	1.12 (0.34, 3.73)	0.86	200	1.21 (0.44, 3.34)	0.71
Limited English Proficiency	203	0.66 (0.29, 1.50)	0.32	204	0.53 (0.17, 1.65)	0.27	204	0.64 (0.25, 1.63)	0.35
Interpreter Present/Provider Speaks Language	202	0.88 (0.33, 2.31)	0.79	203	1.24 (0.37, 4.15)	0.72	203	1.35 (0.49, 3.74)	0.56
Surgery	203	0.36 (0.15, 0.82)	0.02*	204	0.11 (0.03, 0.38)	< 0.01*	204	1.41 (0.45, 4.43)	0.55
Adjuvant	203	0.57 (0.24, 1.36)	0.21	204	0.22 (0.05, 1.01)	0.05	204	2.33 (0.91, 5.99)	0.08
Radiation	202	1.55 (0.64, 3.75)	0.33	203	-	-	203	2.65 (0.85, 8.26)	0.09
Systemic Therapy	203	2.68 (1.18, 6.10)	0.02*	204	-	-	204	2.46 (0.97, 6.26)	0.06

LEP did not demonstrate a significant effect on ED visits at 30 days (p = 0.07) or at 90 days (p = 0.70). At 1 year, patients with LEP showed a significantly lower risk of ED visits compared to English proficient patients (OR 0.31, p=0.05). LEP did not demonstrate a significant effect on readmission at 30 days (p = 0.32), 90 days (p = 0.27), or at 1 year(p = 0.35).

Conclusion

This study found that patients with limited English proficiency (LEP) had significantly lower odds of emergency department (ED) visits at 1 year post-treatment compared to patients without LEP. However, no significant differences were observed between LEP and non-LEP patients in readmission rates at 30 days, 90 days, and 1 year, or in ED visits at 30 and 90 days. These findings suggest that while long-term ED utilization may differ by English proficiency, short-term outcomes and readmissions appear to be unaffected. The lower odds of 1-year ED visits among patients with LEP may reflect barriers to accessing care rather than better health outcomes, raising concerns about potential underutilization. Additionally, the study may be subject to selection bias and limitations in generalizability since it was conducted at a single tertiary medical center. The reliance on retrospective data limits the ability to infer causal relationships. Further research is warranted to explore the underlying factors contributing to the reduced long-term ED visits among patients with LEP.

References

- Zong JBJZJB and J. Language diversity and English proficiency in the United States. migrationpolicy.org. Published February 14, 2023. <https://www.migrationpolicy.org/article/language-diversity-and-english-proficiency-united-states#Poverty>
- Krepp GL, Sparks GL. Meeting the health literacy needs of immigrant populations. *Patient Education and Counseling*. 2008;71(3):328-332. doi:10.1016/j.pec.2008.03.001
- Institute of Medicine (US) Committee on Health Literacy, Nielsen-Bohlman L, Panzer AM, Kindig DA, eds. *Health Literacy: A Prescription to End Confusion*. Washington (DC): National Academies Press (US); 2004.
- Gulati RK, Hur K. Association between Limited English proficiency and healthcare access and utilization in California. *Journal of Immigrant and Minority Health*. 2021;24(1):95-101. doi:10.1007/s10903-021-01224-5
- Shehan JN, Alwani T, LeClair J, et al. Social determinants of health and treatment decisions in head and neck cancer. *Head & Neck*. 2021;44(3):372-381. doi:10.1002/hed.26931
- Bergmark RW, Sedaghat AR. Disparities in health in the United States: An overview of the social determinants of health for otolaryngologists. *Laryngoscope Investig Otolaryngol*. 2017;2(4):187-193. Published 2017 May 28. doi:10.1002/lio2.81
- Berdahl TA, Kirby JB. Patient-Provider Communication Disparities by Limited English Proficiency (LEP): Trends from the US Medical Expenditure Panel Survey, 2006-2015. *Journal of General Internal Medicine*. 2018;34(8):1434-1440. doi:10.1007/s11606-018-4757-3
- Language and Literacy - Healthy People 2030 | Health.gov. <https://health.gov/healthypeople/priority-areas/social-determinants-health/literature-summaries/language-and-literacy#cl16>