

Tonge Enoh, BS; Katie M. Carlson, MPH; Awa S. Jobe, BS; Kathryn Krobot, MA CCC-SLP; Paul A. Gardner, MD; Carl H. Snyderman, MD, MBA; Angela L. Mazul, PhD; Sandra Stinnett, MD

## Introduction

Occipito-cervical (OC) and occipito-cervico-thoracic (OCT) fusions are known to cause postoperative dysphagia.

Various cranial-cervical measurements have been used to investigate their effects on the presence and severity of postoperative dysphagia; however, the exact mechanisms and anatomical impact remain unclear.

## Methods

Retrospective chart review on adult patients who underwent OC/OCT fusion from 2000 to 2022 and reported postoperative dysphagia

Pre and postoperative data on vertebral level fused was collected and O-C2 angle, PIA, and PAS diameter were measured

- Predictors: Degree of deviation from neutral **O-C2** angle, pharyngeal inlet angle (**PIA**), pharyngeal anterior-posterior space (**PAS**) diameter, and **vertebral levels fused**
- Outcome: Subjective reports of postoperative dysphagia and objective reports of swallowing dysfunction

Dysphagia severity was recorded from postoperative Modified Barium Swallow Studies (MBSS)

Statistical analyses were performed in R

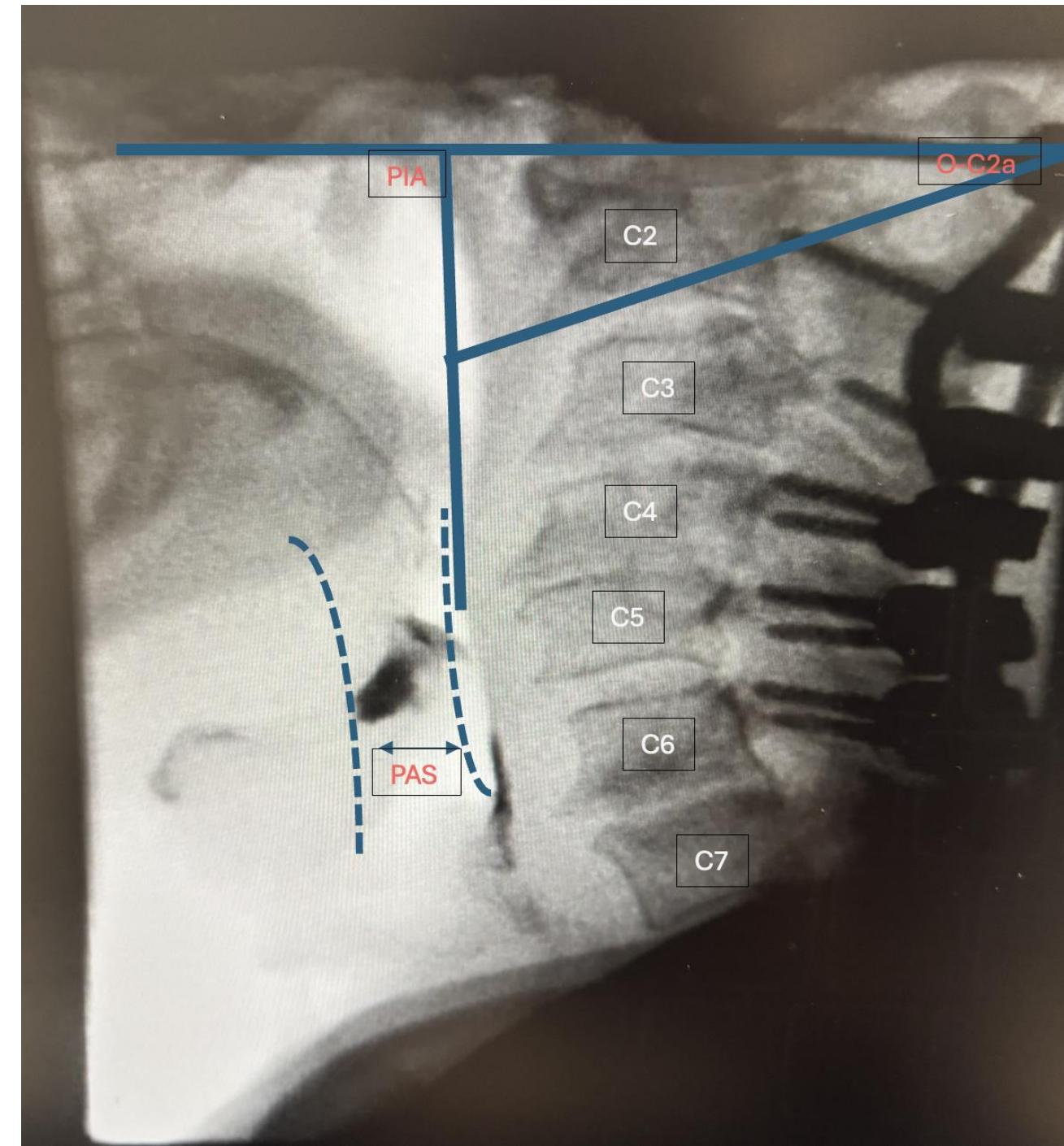



Figure 1

## Results

Table 1

|                               | Overall (N=25)    |
|-------------------------------|-------------------|
| <b>Pre-Op O-C2 (°)</b>        |                   |
| Mean (SD)                     | 22.4 (5.02)       |
| Median [Min, Max]             | 25.0 [7.00, 29.0] |
| <b>Post-Op O-C2 (°)</b>       |                   |
| Mean (SD)                     | 20.0 (4.66)       |
| Median [Min, Max]             | 20.0 [14.0, 34.0] |
| <b>Pre-Op PAS (mm)</b>        |                   |
| Mean (SD)                     | 9.36 (1.01)       |
| Median [Min, Max]             | 9.50 [7.20, 11.3] |
| <b>Post-Op PAS (mm)</b>       |                   |
| Mean (SD)                     | 9.47 (1.42)       |
| Median [Min, Max]             | 9.50 [7.50, 12.9] |
| <b>Pre-Op PIA (°)</b>         |                   |
| Mean (SD)                     | 103 (9.46)        |
| Median [Min, Max]             | 104 [82.0, 120]   |
| <b>Post-Op PIA (°)</b>        |                   |
| Mean (SD)                     | 103 (23.0)        |
| Median [Min, Max]             | 98.0 [85.0, 205]  |
| <b>Levels Fused Collapsed</b> |                   |
| O-C2 to O-C4                  | 13 (52.0%)        |
| O-C5 to O-T1                  | 12 (48.0%)        |
| <b>Swallowing Dysfunction</b> |                   |
| Missing/Not Reported          | 14 (56.0%)        |
| Mild                          | 7 (28.0%)         |
| Moderate                      | 2 (8.0%)          |
| Severe                        | 2 (8.0%)          |
| <b>Age</b>                    |                   |
| Mean (SD)                     | 56.0 (19.2)       |
| Median [Min, Max]             | 57.0 [23.0, 84.0] |

Table 2

| Variable               | Coefficient | Standard Error | Z-value | P-value |
|------------------------|-------------|----------------|---------|---------|
| Change in O-C2 Angle   | -0.15°      | 0.16           | -0.94   | 0.346   |
| Change in PAS Diameter | -0.60mm     | 0.63           | -0.96   | 0.338   |
| Change in PIA Angle    | 0.22°       | 0.11           | 2.07    | 0.038   |

## Discussion

When compared to fusion levels O-C2 to O-C4 (n=13), patients with fusion levels O-C5 or greater (n=12) had progressively higher severity of dysphagia (p< 0.001)

An increase in the PIA was associated with increasing severity of swallow dysfunction

PAS diameter, O-C2 angle and age were not significantly associated with severity of swallow dysfunction

### Limitations

- Small sample size
- Not all patients received MBSS (pre and/or postoperatively)

### Future Directions

- Prospective cohort to collect pre and postoperative PROMs and MBSS
- Collaborate with School of Health and Rehabilitation Sciences to optimize measurements that may predict optimal angle for occipito-cervical fusion to reduce postoperative dysphagia

## Conclusions

The notable incidence of postoperative dysphagia following OC/OCT fusions warrants close monitoring and routine assessment. PIA can potentially be used to predict dysphagia occurrence and severity, which may be useful in preoperative planning and prevention of postoperative dysphagia.

## Contact

Tonge Enoh  
University of Pittsburgh School of Medicine  
3550 Terrace St, Pittsburgh, PA 15213  
Tonge.Enoh@pitt.edu

## References

- Aspiration from dysphagia. Cedars Sinai. <https://www.cedars-sinai.org/health-library/diseases-and-conditions/aspiration-from-dysphagia.html>.
- Bekelis K, Gottfried ON, Wolinsky JP, Gokaslan ZL, Omeis I. Severe dysphagia secondary to posterior C1-C3 instrumentation in a patient with atlantoaxial traumatic injury: a case report and review of the literature. *Dysphagia*. 2010 Jun;25(2):156-60. doi: 10.1007/s00455-009-9255-7. Epub 2009 Sep 30. PMID: 19789914.
- Dysphagia (difficulty swallowing). Cleveland Clinic. <https://my.clevelandclinic.org/health/symptoms/21195-dysphagia-difficulty-swallowing>.
- Izeki M, Neo M, Takemoto M, et al. The O-C2 angle established at occipito-cervical fusion dictates the patient's destiny in terms of postoperative dyspnea and/or dysphagia. *Eur Spine J*. 2014;23(2):328-336. doi:10.1007/s00586-013-2963-6
- Kim JY, Hong JT, Oh JS, et al. Influence of neck postural changes on cervical spine motion and angle during swallowing. *Medicine (Baltimore)*. 2017;96(45):e8566. doi:10.1097/MD.00000000000008566
- Kukreja S, Ambekar S, Sin AH, Nanda A. Occipitocervical Fusion Surgery: Review of Operative Techniques and Results. *J Neurosurg Spine*. 2015;16(5):331-339. doi:10.10155/0034-1543967
- Misawa H, Tanaka M, Sugimoto Y, Koshimura K, Ozaki T. Development of dysphagia and trismus developed after c1-2 posterior fusion in extended position. *Acta Med Okayama*. 2013;67(3):185-90. doi:10.18926/AMO/50412. PMID: 23804142.
- Skull base surgery. Columbia University Irving Medical Center: The Neurological Institute of New York. <https://www.neurosurgery.columbia.edu/patient-care/treatments/skull-base-surgery>.
- Skull base surgery. Johns Hopkins Medicine. <https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/skull-base-surgery>.
- Suivithayasi R, Decharin P. Severe dysphagia after a posterior cervical spine fusion at the C1-C3 level and its improvement after correction surgery for malalignment: a case report. *J Med Case Rep*. 2022;16(1):280. Published 2022 Jul 18. doi:10.1186/s13256-022-03505-5
- Tatter C, El-Hajj VG, Fletcher-Sandersjöö A, Edström C, Elm-Terander A. Radiographic measurements for the prediction of dysphagia after occipitocervical fusion: a systematic review. *Acta Neurochir (Wien)*. 2023;165(5):1161-1170. doi:10.1007/s00701-023-05059-6
- Wang X, Chou D, Jiao F. Influence of Postoperative O-C2 Angle on the Development of Dysphagia After Occipitocervical Fusion Surgery: Results from a Retrospective Analysis and Prospective Validation. *World Neurosurg*. 2018;116:e595-e601. doi:10.1016/j.wneu.2018.05.047