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Figure 1. Schematic of the 
drug-excipient nanoparticle 
synthesis protocol. The 
drug and excipient are 
dissolved in an organic 
solvent (e.g., DMSO) and 
mixed in equimolar 
amounts. The mixture 
undergoes phase reversal 
upon the addition of an 
aqueous solution, leading 
to the self-assembly of 
nanoparticles.

• Devise a robotic-assisted synthesis protocol to create nanodrugs at various excipient/drug
molar ratios.

• Design a hybrid kernel machine approach to prediction nanoparticle formation.
• Apply the computational model to identify novel drug-excipient nanoparticles.

Technology Exposition1
• Drug-excipient nanoparticles are an emerging drug delivery platform.
• They are known for facile synthesis through self-assembly, high drug-loading capacity, and a 

rational design process informed by machine learning1,2.
• However, their simple synthesis (Fig. 1) also prevents tuning of material composition. 
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Figure 2. Robot-assistant screening results of nanoparticle formation experiments. The full data matrix includes 17
drugs and 15 excipients. The optimized synthesis protocol investigated five different excipient/drug molar ratios (0.25, 0.5,
1, 2 and 4) in order to expand the nanoparticle searching space.
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breakdown of novel combinations.
Figure 3. Schematic of the hybrid kernel machine design. Hybrid kernel machine architecture, featuring inputs from 
binary ECFP fingerprints, continuous physicochemical properties, and molarity ratios of drug and excipient during 
synthesis. RBF, radial basis function.

Figure 4. Evaluation of the hybrid kernel machine on predicting nanoparticle formation. a, Evaluation of kernel-learning models using either their default kernel or our new hybrid kernel. Models with default kernels (SVM and GP with RBF kernel; kNN 
with Minkowski distance) are shown in gray, while hybrid kernel models are highlighted in blue. b,c, ROC curves and AUC scores of all surveyed models. The best-performing support vector machine (SVM) model is shown in red, while all other models 
are shown in shades of gray. The dashed diagonal represents random guessing (ROC-AUC = 0.5), and the shaded areas indicate one standard deviation across five independent cross-validation results for each model. SVM, support vector machine; 
GP, Gaussian process; RF, random forest; MPNN, message-passing neural network; kNN, k-nearest neighbors; MLP, multi-layer perceptron. d, Computational cost comparison (normalized to SVM CPU time, except the MPNN which uses GPU 
acceleration). Unpaired t-test (α = 0.05); ****p < 0.0001. 

Figure 5. Venetoclax-Taurocholic Acid (TCA) nanoparticles form when TCA is added more than
Venetoclax. a, Chemical structures of venetoclax and taurocholic acid (TCA). b,c, Model predictions 
and experimental validation (hydrodynamic radius) of venetoclax-TCA nanoparticles at different molar 
ratios. d-f, Transmission electron microscope (TEM) images, size distribution, and dispersion stability of 
500 μM venetoclax, both unformulated and TCA-formulated (venetoclax:TCA = 2, molar ratio). g, 
Venetoclax nanoparticles exhibit improved cytotoxicity over free drugs on Kasumi-1 acute myeloblastic 
leukemia (AML) cells. 
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Figure 6. Synthesizing bio-equivalent trametinib nanoparticles using less Congo red (CR). a, Chemical structures of trametinib and Congo red (CR). b,c, Model 
predictions and experimental validation of Trametinib-CR nanoparticles. d, TEM images of 500 μM trametinib. e, Drug loading of trametinib nanoparticles at CR/trametinib 
molar ratios of 1:1 (standard nanoparticles, 100% CR) and 1:4 (tunable nanoparticles, 25% CR). f, Standard and tunable trametinib nanoparticles (20 μM) exhibit 
comparable in vitro cytotoxicity against HepG2 human liver cancer cells. g, Schematic of in vivo experiment. h, Plasma drug concentration following retro-orbital injection of 
equal doses of standard and tunable trametinib nanoparticles. i, Key pharmacokinetic parameters of standard and optimized trametinib nanoparticles derived from plasma 
drug concentration profiles show largely bioequivalent behavior. Unpaired t- test (α = 0.05); n.s., p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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