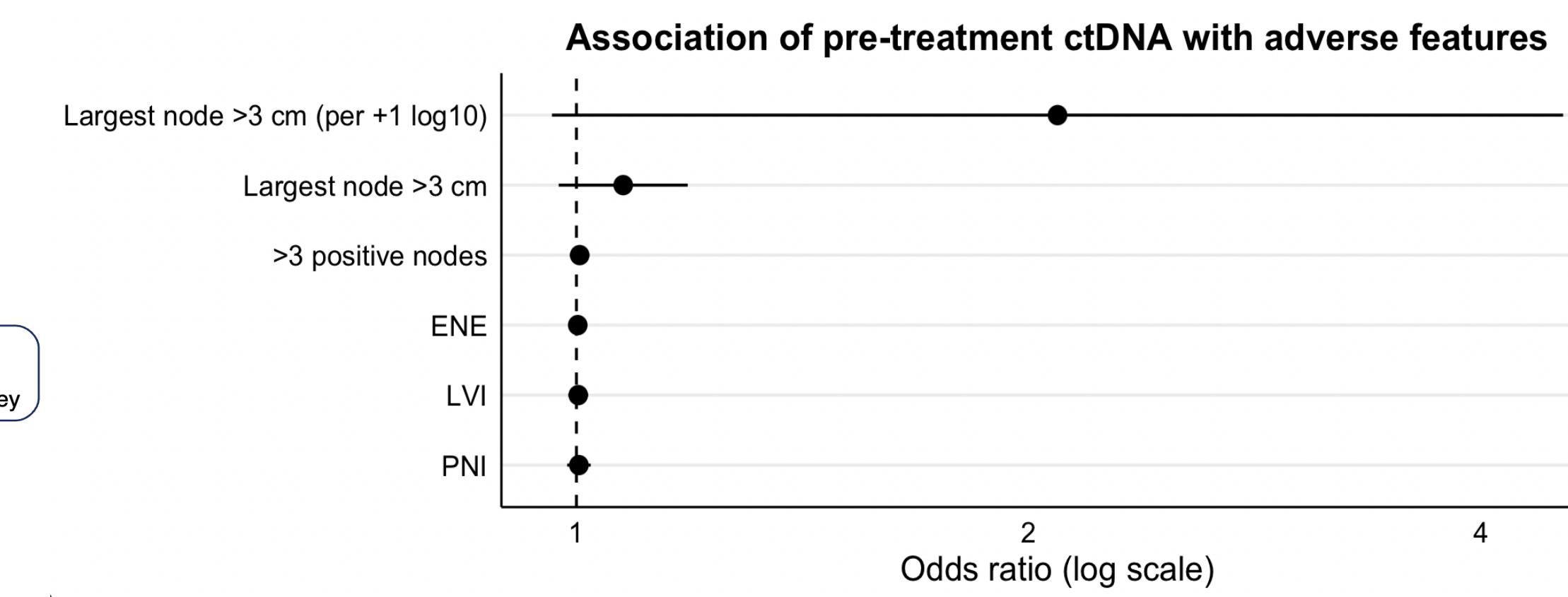
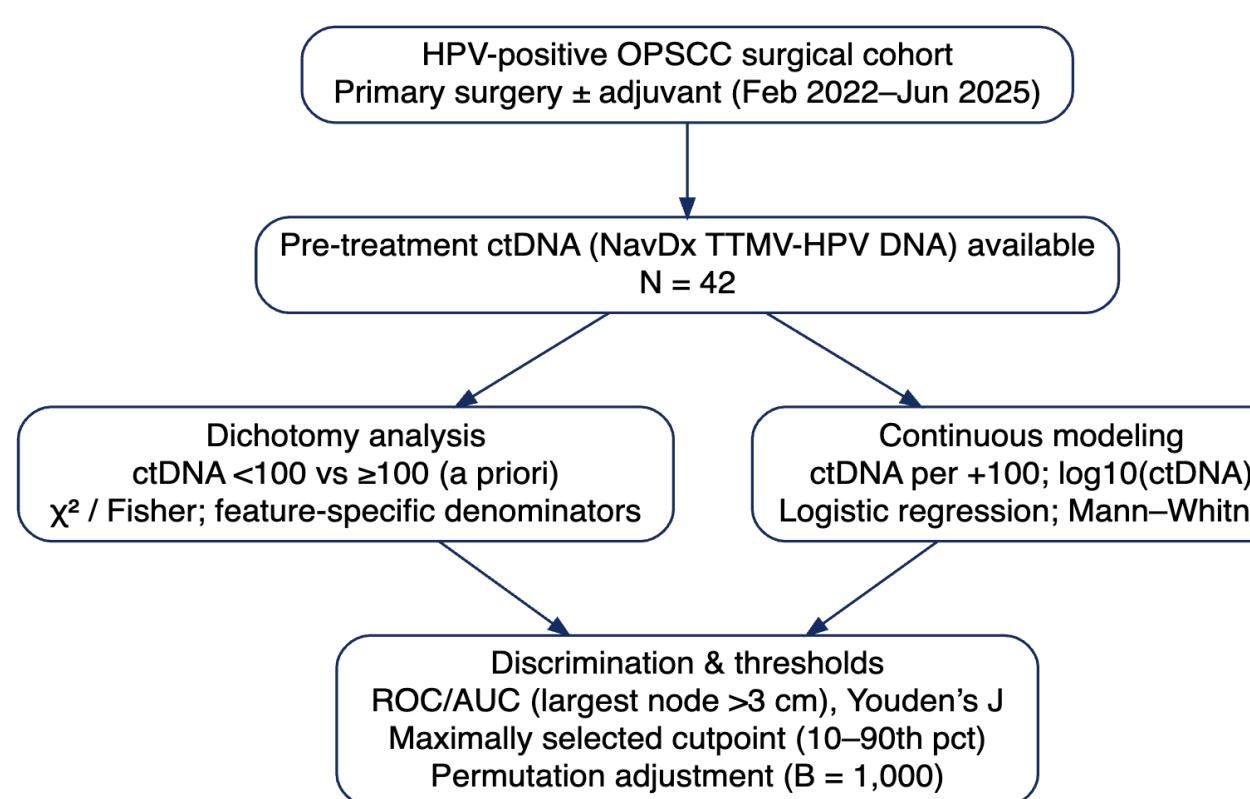


INTRODUCTION

- HPV+ OPSCC adjuvant decisions depend on adverse pathology (PNI, LVI, ENE, nodal number/size)
- It is unclear if pre-treatment TTMV-HPV DNA (NavDx) correlates with these features
- Objectives**
 - Compare <100 vs ≥ 100 fragments/mL groups
 - Analyze ctDNA as a continuous and \log_{10} measure
 - Identify useful operating thresholds for risk stratification

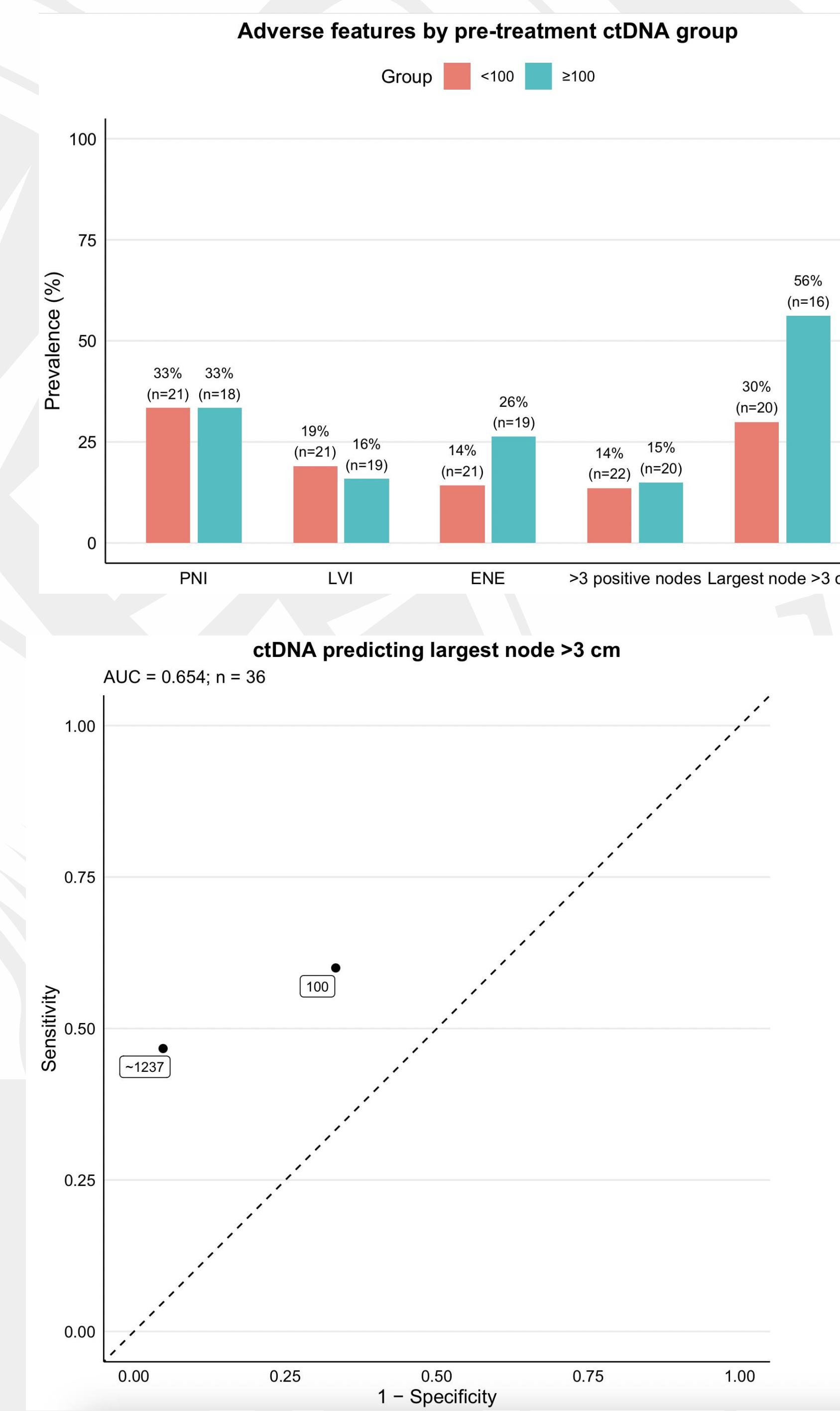
METHODS



- Design/Setting:** Retrospective institutional surgical cohort
- Population:** HPV+ OPSCC with pre-treatment NavDx and primary surgery \pm adjuvant, N=42, (2022 to 2025)
- Outcomes:** PNI, LVI, ENE, >3 positive nodes, largest node >3 cm; secondary = any adverse feature
- Biomarker cutoff for grouping:** Low <100 vs High ≥ 100
- Statistics:** χ^2 or Fisher; Mann–Whitney; logistic regression; ROC/AUC with Youden's J; maximally selected cutpoint scan (10th–90th percentile, ≥ 8 per group)
- Software:** R 4.5.1 GUI 1.82 High Sierra build (8536)

Discussion

- 42 HPV+ OPSCC patients with pre-treatment TTMV-HPV DNA. Age 63.5 y (IQR 57.5–72.0); 81% male.
- No significant differences in PNI, LVI, ENE, >3 nodes, or largest node >3 cm (feature-specific reported in Table 1).
- Pre-treatment ctDNA (per $+1 \log_{10}$) associated with largest node >3 cm: OR 2.09 (95% CI 0.96–4.53), p=0.062; other endpoints showed no signal.
- ROC for predicting largest node >3 cm: AUC 0.654 (n=36).
 - 100 fragments/mL: Sens 0.60, Spec 0.67, PPV 0.56, NPV 0.70.
 - Empiric cutpoint $\sim 1,237$: Sens 0.47, Spec 0.95, PPV 0.88, NPV 0.71.
- Best-p threshold for largest node >3 cm retained significance after permutation adjustment (adjusted p≈0.037), while ENE did not.

CONCLUSIONS


- A simple <100 vs ≥ 100 comparison is not informative in this surgical cohort. ctDNA as a continuous marker yields a rule-in operating point ($\sim 1,237$) identifying patients enriched for large nodal size at pathology.^{1,2}
- ctDNA's strongest utility here is specificity: high pre-treatment values select patients more likely to harbor bulky nodal disease; low values do not reliably exclude adverse features.^{2,3}
- TTMV-HPV DNA is established for surveillance/recurrence detection, whereas pre-treatment risk-stratification remains less defined; our data support exploring ctDNA-guided surgical/adjuvant decision aids.^{1,2,4}

RESULTS

- 42 HPV+ OPSCC patients with pre-treatment TTMV-HPV DNA. Age 63.5 y (IQR 57.5–72.0); 81% male.
- No significant differences in PNI, LVI, ENE, >3 nodes, or largest node >3 cm (feature-specific reported in Table 1).
- Pre-treatment ctDNA (per $+1 \log_{10}$) associated with largest node >3 cm: OR 2.09 (95% CI 0.96–4.53), p=0.062; other endpoints showed no signal.
- ROC for predicting largest node >3 cm: AUC 0.654 (n=36).
 - 100 fragments/mL: Sens 0.60, Spec 0.67, PPV 0.56, NPV 0.70.
 - Empiric cutpoint $\sim 1,237$: Sens 0.47, Spec 0.95, PPV 0.88, NPV 0.71.
- Best-p threshold for largest node >3 cm retained significance after permutation adjustment (adjusted p≈0.037), while ENE did not.

Variable	Value
Age, years	median 63.5 (IQR 57.5–72.0); n=42
Sex — Male	34 (81.0%)
Sex — Female	8 (19.0%)
Race — White	41 (97.6%)
Race — Unknown/Not disclosed	1 (2.4%)
Ethnicity — Not Hispanic/Latino	40 (95.2%)
Ethnicity — Not disclosed/Unknown	2 (4.8%)
History of tobacco smoking — Yes	17 (41.5%)
History of alcohol use — Yes	25 (62.5%)
Primary site — Tonsil	23 (54.8%)
Primary site — Base of tongue	14 (33.3%)
Primary site — 5 (unknown primary)	2 (4.8%)
Primary site — Oropharynx	1 (2.4%)
Primary site — 5 (pyriform sinus)	1 (2.4%)
Primary site — 1, 2	1 (2.4%)
Pathologic T — T1	17 (40.5%)
Pathologic T — T2	22 (52.4%)
Pathologic T — T3	1 (2.4%)
Pathologic N — N0	7 (16.7%)
Pathologic N — N1	31 (73.8%)
Pathologic N — N2	3 (7.1%)
Pathologic stage — I	37 (88.1%)
Pathologic stage — II	4 (9.5%)

References:

- Berger BM, Hanna GJ, Posner MR, et al. Detection of occult recurrence using circulating tumor tissue modified viral HPV DNA among patients treated for HPV-driven oropharyngeal carcinoma. *Clin Cancer Res*. 2022;28(19):4282-4301. doi:10.1158/1078-0432.CCR-22-0562.
- Hanna GJ, Roof SA, Jabeen J, et al. Negative predictive value of circulating tumor tissue modified viral (TTMV)-HPV DNA for HPV-driven oropharyngeal cancer surveillance. *Clin Cancer Res*. 2023;29(20):4306-4313. doi:10.1158/1078-0432.CCR-23-1478.
- Ferrandino RM, Barlow J, Gold B, et al. Diagnostic accuracy of circulating tumor HPV DNA testing in patients with a lateral neck mass. *JAMA Otolaryngol Head Neck Surg*. 2024;150(12):1089-1096. doi:10.1001/jamaoto.2024.2702.
- Lango MN. Circulating human papillomavirus tumor DNA—ready for prime time? *JAMA Otolaryngol Head Neck Surg*. 2023;149(11):978-979. doi:10.1001/jamaoto.2023.1938.
- Agarwal A, Bhatt A, Patel S, Bathla G, Murray J, Rhyne P. Preliminary results from retrospective correlation of circulating tumor DNA with imaging for HPV-positive oropharyngeal squamous cell carcinoma. *AJR Am J Neuroradiol*. 2024;45(8):1135-1140. doi:10.3174/ajrn.A8242.