THE OHIO STATE UNIVERSITY / COLLEGE OF MEDICINE / DIVISION OF INTERVENTIONAL RADIOLOGY

Comparing Embolic Materials in TACE and TARE: Morphology, Vascular Distribution, and Clinical Outcomes

COLLEGE OF MEDICINE

Dev Mookerjee BS, Goutam Gutta BS, Mina S. Makary MD

INTRODUCTION

Embolization is a cornerstone therapy for liver malignancies, using **TACE** (chemoembolization) and **TARE** (radioembolization).

Outcomes depend heavily on embolic material morphology and composition.

Understanding embolic distribution helps optimize therapy, balancing efficacy and safety.

<u>AIM</u>

Analyze how embolic material properties affect:

- Distribution
- Efficacy
- Safety in TACE and TARE

Compare traditional, novel, and bioresorbable embolics to guide clinical selection

METHODS

embolics

Literature review comparing embolic agents:

- **TARE**: Resin & glass Y-90 microspheres
- TACE: PVA microspheres, gelatin sponge (GS), drug-eluting beads (DEBs)
 Novel: Imageable and bioresorbable

Outcomes assessed:

- Tumor absorbed dose (TAD)
- Liver enzyme elevation
- Recurrence rates
- Safety profile

RESULTS

TARE (Y-90 microspheres):

- Resin & glass Y-90 \rightarrow improved dosimetric precision.
- TARGET trial: TAD >300 Gy \rightarrow OS 36.7 mo vs. TAD <200 Gy \rightarrow OS 16.1 mo

TACE:

- PVA microspheres → effective occlusion but ↑ liver enzymes than GS particles.
- GS particles \rightarrow safer for repeat sessions, lower enzyme rise.
- Gelatin-based embolics \rightarrow useful in poor liver function.
- DEBs \rightarrow sustained chemo delivery and release but **higher cost**.

RESULTS

Emerging embolics:

MRI-detectable PVA and Bioresorable microspheres:

- Improves monitoring.
- Reduce long-term complications.

CONCLUSIONS

Embolic morphology & composition directly impact outcomes.

Y-90 microspheres: superior for precision in TARE.

TACE agent selection should consider:

- Liver function
- Tumor vascularity

FUTURE DIRECTIONS

Integration of imageable & bioresorbable microspheres

Personalized embolic selection \rightarrow maximize efficacy & minimize toxicity.

BIBLIOGRAPHY

Lam M, Garin E, Maccauro M, et al. A global evaluation of advanced dosimetry in transarterial radioembolization of hepatocellular carcinoma with Yttrium-90: the TARGET study. Eur J Nucl Med Mol Imaging.

2022;49:3340-3352. doi:10.1007/s00259-022-05774-0.

Zeng J, Wang Y, Hou H, et al. Comparison of 8Spheres polyvinyl alcohol microsphere and gelatin sponge particle efficacy for transcatheter arterial chemoembolization in stages A to B patients with hepatocellular carcinoma. J Cancer Res Ther. 2023;19(2):436-443. doi:10.4103/jctt.jct_736_22.

Li Z, Qin XY, Guo LY, et al. Poly(acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization and MRI detectability: in vitro and in vivo evaluation. Int J Pharm. 2017;527(1-2):31-41. doi:10.1016/j.ipharm.2017.04.069.

THE OHIO STATE UNIVERSITY