The Ohio State University / College of Medicine / Department of Radiology

Locoregional and Immunotherapy Integration for Hepatocellular Carcinoma: Mechanistic Rationale and Trial Landscape

Nikhil Sekar, BA¹, Jenish S. Venancius, MPH¹, Alexander D. Rudich, BS¹, Elliott L. Fite, MS¹, Mina S. Makary, MD^{2*}

¹The Ohio State University College of Medicine; Columbus, OH 43210

²Department of Radiology, The Ohio State University Medical Center, Columbus, OH 43210

PURPOSE

This educational review analyzes the rationale and current trial landscape of combined treatment approaches including either transarterial chemoembolization (TACE) or transarterial radioembolization (TARE) and Immunotherapy for Hepatocellular Carcinoma (HCC).

BACKGROUND

- HCC is a leading cause of cancer-related mortality and its incidence is increasing
- Both TACE and TARE have long been the standard of care treatments for intermediatestage HCC.
- TACE and TARE may modulate the tumor microenvironment and upregulate proinflammatory cytokines, thereby increasing immune checkpoint molecules.⁷
- This upregulation in turn increases the efficacy of PD-L1 inhibitors.

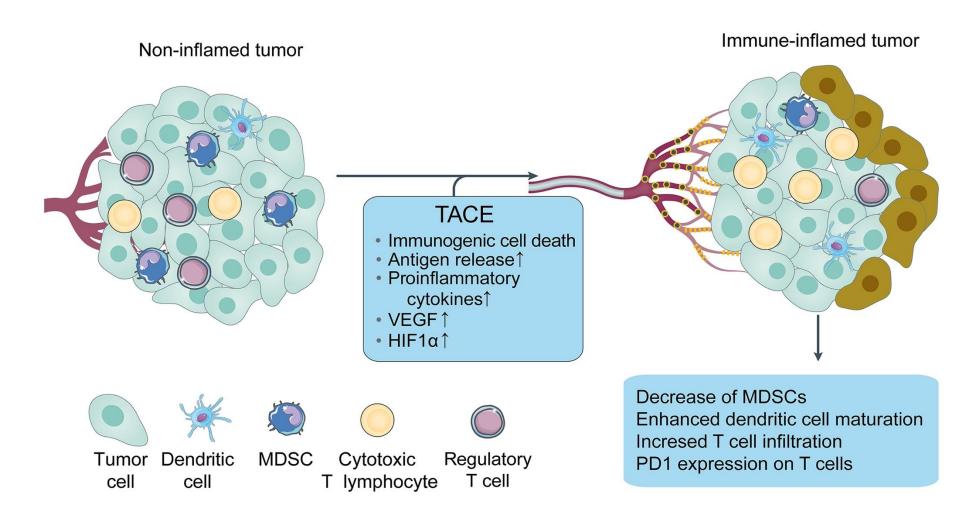


Figure 1, TACE Altering the Tumor Microenvironment, adapted from Zhong et. al

METHODS

A systematic literature review was conducted evaluating PubMed-indexed clinical trials and randomized control trials containing the search parameters "TACE and immunotherapy" or "TARE and immunotherapy" as a treatment for HCC.

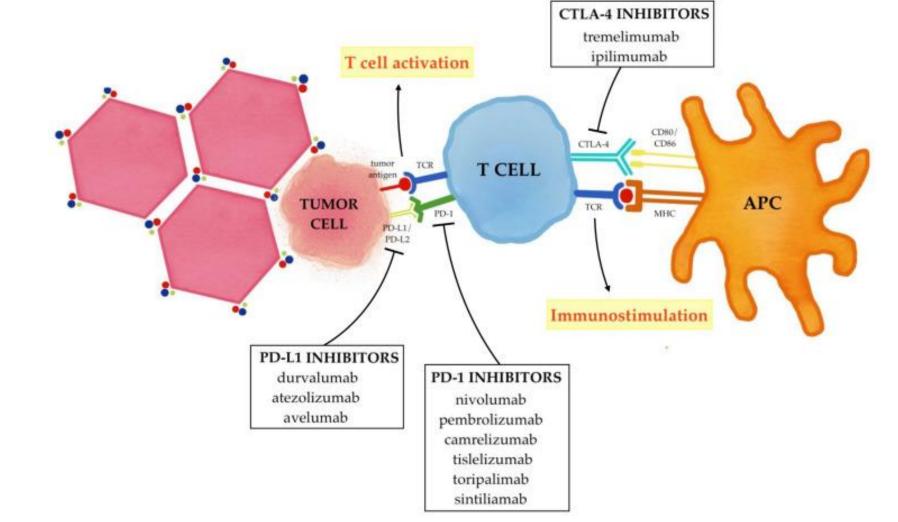


Figure 2, Immunotherapy Overview and Mechanisms, adapted from Brandi et. al

Combination Therapy	Progression- Free Survival (PFS)*	Overall Survival (OS)*	Disease Control Rate (DCR)*	Objective Response Rate (ORR)*	Phase	Study Name
TACE + Pemrolizumab	8.95 months	33.5 months	Not reported	53%	Ib	PETAL ²
TACE + Sintilimab	8.4 months	Not yet reached	95.0% (76.4 to 99.1)	60% (38.7% to 78.1%)	II	Li et al. ³
TACE + radiotherapy + Avelumumab	14.9 months (8.2– 21.6)	23.7 months (15.2– 32.2)	85% (69–95%)	73% (55–87%)	II	START- FIT ¹
TARE + Pemrolizumab	9.95 months (4.14-15.24)	27.30 months (10.15-39.52)	84.6% (65.1-95.6)	30.8% (14.3-51.8)	II	HCRN GI15-225 ⁵

Table 1, Summary of Preliminary Trials *outcomes according to mRESIST criteria

RESULTS

The studies reviewed were either phase I or II trials on patients with unresectable HCC, all of which yielded improved outcomes after combination therapy. The studies reported similar safety profiles as the monotherapies, reporting mostly manageable gastrointestinal side effects¹⁻⁵

CONCLUSIONS

Thus far, early prospective studies in patients with intermediate to advanced-stage HCC have demonstrated improved survival using a combination approach as opposed to TACE or TARE monotherapy. However, this treatment combination needs to be investigated in later phase studies before informing clinical practice.

REFERENCES

- Chiang CL, Chiu KWH, Chan KSK, et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma (START-FIT): a single-arm, phase 2 trial. *Lancet Gastroenterol Hepatol*. 2023;8(2):169-178. doi:10.1016/S2468-1253(22)00339-9
- 2. Pinato DJ, D'Alessio A, Fulgenzi CAM, et al. Safety and Preliminary Efficacy of Pembrolizumab Following Transarterial Chemoembolization for Hepatocellular Carcinoma: The PETAL Phase Ib Study. *Clin Cancer Res.* 2024;30(11):2433-2443. doi:10.1158/1078-0432.CCR-24-0177
- 3. Li L, Xu X, Wang W, et al. Safety and efficacy of PD-1 inhibitor (sintilimab) combined with transarterial chemoembolization as the initial treatment in patients with intermediate-stage hepatocellular carcinoma beyond up-to-seven criteria. *J Immunother Cancer*. 2025;13(1):e010035. Published 2025 Jan 16. doi:10.1136/jitc-2024-010035
- 4. Wang X, Bayer ME, Chen X, et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. *J Surg Oncol*. 2015;111(7):862-867. doi:10.1002/jso.23897
- 5. Yu S, Yu M, Keane B, et al. A Pilot Study of Pembrolizumab in Combination With Y90 Radioembolization in Subjects With Poor Prognosis Hepatocellular Carcinoma. *Oncologist*. 2024;29(3):270-e413. doi:10.1093/oncolo/oyad331
- Brandi N, Renzulli M. The Synergistic Effect of Interventional Locoregional Treatments and Immunotherapy for the Treatment of Hepatocellular Carcinoma. Int J Mol Sci. 2023 May 11;24(10):8598. doi: 10.3390/ijms24108598. PMID: 37239941; PMCID: PMC10217839.
- 7. Zhong BY, Jin ZC, Chen JJ, Zhu HD, Zhu XL. Role of Transarterial Chemoembolization in the Treatment of Hepatocellular Carcinoma. J Clin Transl Hepatol. 2023 Apr 28;11(2):480-489. doi: 10.14218/JCTH.2022.00293. Epub 2022 Sep 6. PMID: 36643046; PMCID: PMC9817054.

