Irreversible Electroporation (IRE): A Novel Non-Thermal Modality for Central Pancreatic Tumors

Authors: Layth Khawaja¹, Saad Badat¹, Mina S. Markary Institutions: ¹Northeast Ohio Medical University, ²Ohio State University Wexner Medical Center

Introduction

- Pancreatic ductal adenocarcinoma (PDAC) remains one of the
 most challenging malignancies, with a 5-year survival rate of
 less than 12%. Approximately 30-40% of patients present with
 locally advanced pancreatic cancer (LAPC), where tumors
 enccase critical vascular structures, precluding surgical
 resection. Traditional thermal ablation techniques are
 contraindicated in central pancreatic locations due to the risk
 of thermal injury to adjacent vessels and organs.
- IRE represents a paradigm shift as a non-thermal ablative technique that uses short, high-voltage electrical pulses to create irreversible nanopores in cell membranes, leading to cell death while preserving the structural integrity of blood vessels, bile ducts, and other critical structures. This unique mechanism makes IRE particularly suited for treating centrally located pancreatic tumors that are otherwise deemed unresectable.
- Purpose: IRE is an emerging non-thermal ablative technique uniquely suited for treating pancreatic tumors located adjacent to critical vasculature. This educational exhibit aims to provide an overview of IRE in the management of central and peripheral pancreatic tumors, with emphasis on its safety, efficacy, and future directions.

Methods

A comprehensive literature review was performed using PubMed to identify clinical and preclinical studies on IRE for pancreatic cancer published since 2010. Key outcomes analyzed include treatment efficacy, procedural safety, and integration with systemic therapies. Relevant review articles and ongoing clinical trials were also included to highlight future research trends.

Results

Yun et al. (2023) - Technical Review	Rai et al. (2021) - Clinical Outcomes
Device Performance	Clinical Efficacy
Technical success: 95-100%	Median OS: 10-30 months
NanoKnife: 1500-3000V delivery	Local control: 65-85% at 12 months
Optimal distance: 0.7-2.9 cm between	Pridge to surgeny: 5 15%
probes	Bridge-to-surgery: 5-15%
Safety Profile	Complications
Preserves vessels up to wall	Major complications: 8-42%
No heat-sink effect	• Mortality: 2% (open), 0%
	(percutaneous)
Best results: tumors < 3 cm	Hospital stay: 3-4 days
New Technologies	Combination Benefits
H-FIRE: eliminates muscle contractions	3x gemcitabine concentration
Robotic guidance: 2.2 vs 3.1 mm accuracy	• Enhanced apoptosis: 34.2% vs 5.2%
Single-probe systems available	Increased CD8+ T cells
Mechanism	Tissue Effects
Nanopore formation in cell membranes	Apoptosis/necrosis: 24-72 hours
Non-thermal ablation	Fibrosis development: 14-28 days
Cardiac synchronization required	• Immune activation via DAMP release
	· · · · · · · · · · · · · · · · · · ·

(a)

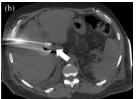


Figure 1 (Yun et al.): The patient underwent liver-directed IRE after a multidisciplinary tumor board discussion (a) pre-procedural MRI imaging demonstrates an enhancing mass (arrow) near the hepatic hilum. (b) intraprocedural CT imaging demonstrates two parallel probes with an enhancing zone of ablation in between the probes. Gas within the lesion (arrow) is an expected finding due to the dissociation of gases from the blood. (c) post-ablation 3-month follow-up MRI reveals hypoattenuation and lack of enhancement of the ablation target (arrow).

Discussion

- Non-thermal mechanism allows ablation near vessels without vascular compromise, a key advantage over thermal methods.
- Transient post-IRE swelling reflects treatment-related edema/inflammation, not tumor progression.
- Marked shrinkage by 2–6 weeks demonstrates durable local control consistent with prior IRE outcomes.
- Favorable safety profile is supported by minimal collateral damage despite initial volume fluctuation.
- Future directions include combining IRE with systemic or immunotherapies to enhance long-term efficacy

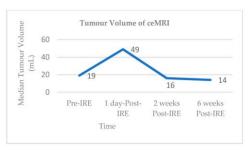


Figure 2 (Rai et al.) Median tumor volumes on contrast enhanced MRI

References

- Yun JH, Fang A, Khorshidi F, et al. New Developments in Image-Guided Percutaneous Irreversible Electroporation of Solid Tumors. Curr Oncol Rep. 2023;25(11):1213-1226. doi:10.1007/s11912-023-01452-y
- Rai ZL, Feakins R, Pallett LJ, Manas D, Davidson BR. Irreversible Electroporation (IRE) in Locally Advanced Pancreatic Cancer: A Review of Current Clinical Outcomes, Mechanism of Action and Opportunities for Synergistic Therapy. J Clin Med. 2021;10(8):1609. Published 2021 Apr 10. doi:10.3390/jcm10081609